File: test_pfh_estimation.cpp

package info (click to toggle)
pcl 1.13.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 143,524 kB
  • sloc: cpp: 518,578; xml: 28,792; ansic: 13,676; python: 334; lisp: 93; sh: 49; makefile: 30
file content (543 lines) | stat: -rw-r--r-- 21,661 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
/*
 * Software License Agreement (BSD License)
 *
 *  Point Cloud Library (PCL) - www.pointclouds.org
 *  Copyright (c) 2010-2012, Willow Garage, Inc.
 *
 *  All rights reserved.
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.
 *   * Neither the name of the copyright holder(s) nor the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *  POSSIBILITY OF SUCH DAMAGE.
 *
 * $Id$
 *
 */

#include <pcl/pcl_config.h>
#ifdef PCL_ONLY_CORE_POINT_TYPES
  #define PCL_NO_PRECOMPILE
#endif

#include <pcl/test/gtest.h>
#include <pcl/point_cloud.h>
#include <pcl/features/pfh.h>
#include <pcl/features/fpfh.h>
#include <pcl/features/fpfh_omp.h>
#include <pcl/features/vfh.h>
#include <pcl/features/gfpfh.h>
#include <pcl/io/pcd_io.h>

using PointT = pcl::PointNormal;
using KdTreePtr = pcl::search::KdTree<PointT>::Ptr;
using pcl::PointCloud;

static PointCloud<PointT>::Ptr cloud (new PointCloud<PointT> ());
static pcl::Indices indices;
static KdTreePtr tree;

///////////////////////////////////////////////////////////////////////////////////
template<template<class, class, class> class FeatureEstimation, typename PointT, typename NormalT, typename OutputT> void
testIndicesAndSearchSurface (const typename PointCloud<PointT>::Ptr & points,
                             const typename PointCloud<NormalT>::Ptr & normals,
                             const pcl::IndicesPtr & indices, int ndims)

{
  using KdTreeT = pcl::search::KdTree<PointT>;
  using FeatureEstimationT = FeatureEstimation<PointT, NormalT, OutputT>;

  //
  // Test setIndices and setSearchSurface
  //
  PointCloud<OutputT> full_output, output0, output1, output2;

  // Compute for all points and then subsample the results
  FeatureEstimationT est0;
  est0.setSearchMethod (typename KdTreeT::Ptr (new KdTreeT));
  est0.setKSearch (10);
  est0.setInputCloud (points);
  est0.setInputNormals (normals);
  est0.compute (full_output);
  copyPointCloud (full_output, *indices, output0);

  // Compute with all points as "search surface" and the specified sub-cloud as "input"
  typename PointCloud<PointT>::Ptr subpoints (new PointCloud<PointT>);
  copyPointCloud (*points, *indices, *subpoints);
  FeatureEstimationT est1;
  est1.setSearchMethod (typename KdTreeT::Ptr (new KdTreeT));
  est1.setKSearch (10);
  est1.setInputCloud (subpoints);
  est1.setSearchSurface (points);
  est1.setInputNormals (normals);
  est1.compute (output1);

  // Compute with all points as "input" and the specified indices
  FeatureEstimationT est2;
  est2.setSearchMethod (typename KdTreeT::Ptr (new KdTreeT));
  est2.setKSearch (10);
  est2.setInputCloud (points);
  est2.setInputNormals (normals);
  est2.setIndices (indices);
  est2.compute (output2);

  // All three of the above cases should produce equivalent results
  ASSERT_EQ (output0.size (), output1.size ());
  ASSERT_EQ (output1.size (), output2.size ());
  for (std::size_t i = 0; i < output1.size (); ++i)
  {
    for (int j = 0; j < ndims; ++j)
    {
      ASSERT_EQ (output0[i].histogram[j], output1[i].histogram[j]);
      ASSERT_EQ (output1[i].histogram[j], output2[i].histogram[j]);
    }
  }

  //
  // Test the combination of setIndices and setSearchSurface
  //
  PointCloud<OutputT> output3, output4;

  pcl::IndicesPtr indices2 (new pcl::Indices (0));
  for (std::size_t i = 0; i < (indices->size ()/2); ++i)
    indices2->push_back (static_cast<int> (i));

  // Compute with all points as search surface + the specified sub-cloud as "input" but for only a subset of indices
  FeatureEstimationT est3;
  est3.setSearchMethod (typename KdTreeT::Ptr (new KdTreeT));
  est3.setKSearch (10);
  est3.setSearchSurface (points);
  est3.setInputNormals (normals);
  est3.setInputCloud (subpoints);
  est3.setIndices (indices2);
  est3.compute (output3);

  // Start with features for each point in "subpoints" and then subsample the results
  copyPointCloud (output0, *indices2, output4); // (Re-using "output0" from above)

  // The two cases above should produce equivalent results
  ASSERT_EQ (output3.size (), output4.size ());
  for (std::size_t i = 0; i < output3.size (); ++i)
  {
    for (int j = 0; j < ndims; ++j)
    {
      ASSERT_EQ (output3[i].histogram[j], output4[i].histogram[j]);
    }
  }
}

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
TEST (PCL, PFHEstimation)
{
  using pcl::PFHSignature125;

  float f1, f2, f3, f4;

  pcl::PFHEstimation<PointT, PointT, PFHSignature125> pfh;
  pfh.setInputNormals (cloud);
  EXPECT_EQ (pfh.getInputNormals (), cloud);

  // computePairFeatures
  pfh.computePairFeatures (*cloud, *cloud, 0, 12, f1, f2, f3, f4);
  EXPECT_NEAR (f1, -0.072575, 1e-4);
  EXPECT_NEAR (f2, -0.040221, 1e-4);
  EXPECT_NEAR (f3, 0.068133, 1e-4);
  EXPECT_NEAR (f4, 0.006130, 1e-4);

  // computePointPFHSignature
  int nr_subdiv = 3;
  Eigen::VectorXf pfh_histogram (nr_subdiv * nr_subdiv * nr_subdiv);
  pfh.computePointPFHSignature (*cloud, *cloud, indices, nr_subdiv, pfh_histogram);
  EXPECT_NEAR (pfh_histogram[0],  0.932506, 1e-2);
  EXPECT_NEAR (pfh_histogram[1],  2.32429 , 1e-2);
  EXPECT_NEAR (pfh_histogram[2],  0.357477, 1e-2);
  EXPECT_NEAR (pfh_histogram[3],  0.848541, 1e-2);
  EXPECT_NEAR (pfh_histogram[4],  3.65565 , 2e-2); // larger error w.r.t. considering all point pairs (feature bins=0,1,1 where 1 is middle, so angle of 0)
  EXPECT_NEAR (pfh_histogram[5],  0.178104, 1e-2);
  EXPECT_NEAR (pfh_histogram[6],  1.45284 , 1e-2);
  EXPECT_NEAR (pfh_histogram[7],  3.60666 , 1e-2);
  EXPECT_NEAR (pfh_histogram[8],  0.298959, 1e-2);
  EXPECT_NEAR (pfh_histogram[9],  0.295143, 1e-2);
  EXPECT_NEAR (pfh_histogram[10], 2.13474 , 1e-2);
  EXPECT_NEAR (pfh_histogram[11], 0.41218 , 1e-2);
  EXPECT_NEAR (pfh_histogram[12], 0.165382, 1e-2);
  EXPECT_NEAR (pfh_histogram[13], 8.97407 , 1e-2);
  EXPECT_NEAR (pfh_histogram[14], 0.306592, 1e-2);
  EXPECT_NEAR (pfh_histogram[15], 0.455432, 1e-2);
  EXPECT_NEAR (pfh_histogram[16], 4.5977 ,  1e-2);
  EXPECT_NEAR (pfh_histogram[17], 0.393097, 1e-2);
  EXPECT_NEAR (pfh_histogram[18], 7.54668 , 1e-2);
  EXPECT_NEAR (pfh_histogram[19], 6.78336 , 1e-2);
  EXPECT_NEAR (pfh_histogram[20], 1.63858 , 1e-2);
  EXPECT_NEAR (pfh_histogram[21], 9.93842 , 1e-2);
  EXPECT_NEAR (pfh_histogram[22], 18.4947 , 2e-2); // larger error w.r.t. considering all point pairs (feature bins=2,1,1 where 1 is middle, so angle of 0)
  EXPECT_NEAR (pfh_histogram[23], 1.96553 , 1e-4);
  EXPECT_NEAR (pfh_histogram[24], 8.04793 , 1e-4);
  EXPECT_NEAR (pfh_histogram[25], 11.2793  , 1e-4);
  EXPECT_NEAR (pfh_histogram[26], 2.91714 , 1e-4);

  // Sum of values should be 100
  EXPECT_NEAR (pfh_histogram.sum (), 100.0, 1e-2);
  //std::cerr << pfh_histogram << std::endl;

  // Object
  PointCloud<PFHSignature125>::Ptr pfhs (new PointCloud<PFHSignature125> ());
  pcl::IndicesPtr indicesptr (new pcl::Indices (indices));

  // set parameters
  pfh.setInputCloud (cloud);
  pfh.setIndices (indicesptr);
  pfh.setSearchMethod (tree);
  pfh.setKSearch (static_cast<int> (indices.size ()));

  // estimate
  pfh.compute (*pfhs);
  EXPECT_EQ (pfhs->size (), indices.size ());

  for (const auto &point : pfhs->points)
  {
    EXPECT_NEAR (point.histogram[0],  0.156477  , 1e-4);
    EXPECT_NEAR (point.histogram[1],  0.539396  , 1e-4);
    EXPECT_NEAR (point.histogram[2],  0.410907  , 1e-4);
    EXPECT_NEAR (point.histogram[3],  0.184465  , 1e-4);
    EXPECT_NEAR (point.histogram[4],  0.115767  , 1e-4);
    EXPECT_NEAR (point.histogram[5],  0.0572475 , 1e-4);
    EXPECT_NEAR (point.histogram[6],  0.206092  , 1e-4);
    EXPECT_NEAR (point.histogram[7],  0.339667  , 1e-4);
    EXPECT_NEAR (point.histogram[8],  0.265883  , 1e-4);
    EXPECT_NEAR (point.histogram[9],  0.0038165 , 1e-4);
    EXPECT_NEAR (point.histogram[10], 0.103046  , 1e-4);
    EXPECT_NEAR (point.histogram[11], 0.214997  , 1e-4);
    EXPECT_NEAR (point.histogram[12], 0.398186  , 3e-2); // larger error w.r.t. considering all point pairs (feature bins=0,2,2 where 2 is middle, so angle of 0)
    EXPECT_NEAR (point.histogram[13], 0.298959  , 1e-4);
    EXPECT_NEAR (point.histogram[14], 0.00127217, 1e-4);
    EXPECT_NEAR (point.histogram[15], 0.11704   , 1e-4);
    EXPECT_NEAR (point.histogram[16], 0.255706  , 1e-4);
    EXPECT_NEAR (point.histogram[17], 0.356205  , 1e-4);
    EXPECT_NEAR (point.histogram[18], 0.265883  , 1e-4);
    EXPECT_NEAR (point.histogram[19], 0.00127217, 1e-4);
    EXPECT_NEAR (point.histogram[20], 0.148844  , 1e-4);
    //EXPECT_NEAR (point.histogram[21], 0.721316  , 1e-3);
    //EXPECT_NEAR (point.histogram[22], 0.438899  , 1e-2);
    EXPECT_NEAR (point.histogram[23], 0.22263   , 1e-4);
    EXPECT_NEAR (point.histogram[24], 0.0216269 , 1e-4);
    EXPECT_NEAR (point.histogram[25], 0.223902  , 1e-4);
    EXPECT_NEAR (point.histogram[26], 0.07633   , 1e-4);
  }
  //Eigen::Map<Eigen::VectorXf> h (&((*pfhs)[0].histogram[0]), 125);
  //std::cerr << h.head<27> () << std::endl;

  // Test results when setIndices and/or setSearchSurface are used

  pcl::IndicesPtr test_indices (new pcl::Indices (0));
  for (std::size_t i = 0; i < cloud->size (); i+=3)
    test_indices->push_back (static_cast<int> (i));

  testIndicesAndSearchSurface<pcl::PFHEstimation, PointT, PointT, PFHSignature125>
  (cloud, cloud, test_indices, 125);
}

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////

using pcl::FPFHEstimation;
using pcl::FPFHEstimationOMP;
using pcl::FPFHSignature33;

// "Placeholder" for the type specialized test fixture
template<typename T>
struct FPFHTest;

// Template specialization test for FPFHEstimation
template<>
struct FPFHTest<FPFHEstimation<PointT, PointT, FPFHSignature33> >
  : public ::testing::Test
{
  FPFHEstimation<PointT, PointT, FPFHSignature33> fpfh;
};

// Template specialization test for FPFHEstimationOMP
template<>
struct FPFHTest<FPFHEstimationOMP<PointT, PointT, FPFHSignature33> >
  : public ::testing::Test
{
  FPFHEstimationOMP<PointT, PointT, FPFHSignature33> fpfh{4}; // 4 threads
};

// Types which will be instantiated
using FPFHEstimatorTypes = ::testing::Types
        <FPFHEstimation<PointT, PointT, FPFHSignature33>,
         FPFHEstimationOMP<PointT, PointT, FPFHSignature33> >;
TYPED_TEST_SUITE (FPFHTest, FPFHEstimatorTypes);

// This is a copy of the old FPFHEstimation test which will now
// be applied to both FPFHEstimation and FPFHEstimationOMP
TYPED_TEST (FPFHTest, Estimation)
{
  // Create reference
  TypeParam& fpfh = this->fpfh;
  fpfh.setInputNormals (cloud);
  EXPECT_EQ (fpfh.getInputNormals (), cloud);

  // computePointSPFHSignature
  int nr_subdiv = 11; // use the same number of bins for all three angular features
  Eigen::MatrixXf hist_f1 (indices.size (), nr_subdiv), hist_f2 (indices.size (), nr_subdiv), hist_f3 (indices.size (), nr_subdiv);
  hist_f1.setZero (); hist_f2.setZero (); hist_f3.setZero ();
  for (int i = 0; i < static_cast<int> (indices.size ()); ++i)
    fpfh.computePointSPFHSignature (*cloud, *cloud, i, i, indices, hist_f1, hist_f2, hist_f3);

  EXPECT_NEAR (hist_f1 (0, 0), 0.757576, 1e-4);
  EXPECT_NEAR (hist_f1 (0, 1), 0.757576, 1e-4);
  EXPECT_NEAR (hist_f1 (0, 2), 4.54545,  1e-4);
  EXPECT_NEAR (hist_f1 (0, 3), 19.697,   1e-4);
  EXPECT_NEAR (hist_f1 (0, 4), 40.6566,  1e-4);
  EXPECT_NEAR (hist_f1 (0, 5), 21.4647,  1e-4);
  EXPECT_NEAR (hist_f1 (0, 6), 7.575759, 1e-4);
  EXPECT_NEAR (hist_f1 (0, 7), 0.000000, 1e-4);
  EXPECT_NEAR (hist_f1 (0, 8), 0.000000, 1e-4);
  EXPECT_NEAR (hist_f1 (0, 9), 0.50505,  1e-4);
  EXPECT_NEAR (hist_f1 (0, 10), 4.0404,  1e-4);

  EXPECT_NEAR (hist_f2 (0, 0), 0.757576, 1e-4);
  EXPECT_NEAR (hist_f2 (0, 1), 1.51515,  1e-4);
  EXPECT_NEAR (hist_f2 (0, 2), 6.31313,  1e-4);
  EXPECT_NEAR (hist_f2 (0, 3), 9.59596,  1e-4);
  EXPECT_NEAR (hist_f2 (0, 4), 20.7071,  1e-4);
  EXPECT_NEAR (hist_f2 (0, 5), 18.9394,  1e-4);
  EXPECT_NEAR (hist_f2 (0, 6), 15.9091,  1e-4);
  EXPECT_NEAR (hist_f2 (0, 7), 12.8788,  1e-4);
  EXPECT_NEAR (hist_f2 (0, 8), 6.56566,  1e-4);
  EXPECT_NEAR (hist_f2 (0, 9), 4.29293,  1e-4);
  EXPECT_NEAR (hist_f2 (0, 10), 2.52525, 1e-4);

  EXPECT_NEAR (hist_f3 (0, 0), 0.000000, 1e-4);
  EXPECT_NEAR (hist_f3 (0, 1), 5.05051,  1e-4);
  EXPECT_NEAR (hist_f3 (0, 2), 4.54545,  1e-4);
  EXPECT_NEAR (hist_f3 (0, 3), 5.05051,  1e-4);
  EXPECT_NEAR (hist_f3 (0, 4), 1.76768,  1e-4);
  EXPECT_NEAR (hist_f3 (0, 5), 3.0303,   1e-4);
  EXPECT_NEAR (hist_f3 (0, 6), 9.09091,  1e-4);
  EXPECT_NEAR (hist_f3 (0, 7), 31.8182,  1e-4);
  EXPECT_NEAR (hist_f3 (0, 8), 22.2222,  1e-4);
  EXPECT_NEAR (hist_f3 (0, 9), 11.8687,  1e-4);
  EXPECT_NEAR (hist_f3 (0, 10), 5.55556, 1e-4);

  // weightPointSPFHSignature
  Eigen::VectorXf fpfh_histogram (nr_subdiv + nr_subdiv + nr_subdiv);
  fpfh_histogram.setZero ();
  std::vector<float> dists (indices.size ());
  for (std::size_t i = 0; i < dists.size (); ++i) dists[i] = static_cast<float> (i);
  fpfh.weightPointSPFHSignature (hist_f1, hist_f2, hist_f3, indices, dists, fpfh_histogram);

  EXPECT_NEAR (fpfh_histogram[0],  1.9798 ,  1e-2);
  EXPECT_NEAR (fpfh_histogram[1],  2.86927,  1e-2);
  EXPECT_NEAR (fpfh_histogram[2],  8.47911,  1e-2);
  EXPECT_NEAR (fpfh_histogram[3],  22.8784,  1e-2);
  EXPECT_NEAR (fpfh_histogram[4],  29.8597,  1e-2);
  EXPECT_NEAR (fpfh_histogram[5],  19.6877,  1e-2);
  EXPECT_NEAR (fpfh_histogram[6],  7.38611,  1e-2);
  EXPECT_NEAR (fpfh_histogram[7],  1.44265,  1e-2);
  EXPECT_NEAR (fpfh_histogram[8],  0.69677,  1e-2);
  EXPECT_NEAR (fpfh_histogram[9],  1.72609,  1e-2);
  EXPECT_NEAR (fpfh_histogram[10], 2.99435,  1e-2);
  EXPECT_NEAR (fpfh_histogram[11], 2.26313,  1e-2);
  EXPECT_NEAR (fpfh_histogram[12], 5.16573,  1e-2);
  EXPECT_NEAR (fpfh_histogram[13], 8.3263 ,  1e-2);
  EXPECT_NEAR (fpfh_histogram[14], 9.92427,  1e-2);
  EXPECT_NEAR (fpfh_histogram[15], 16.8062,  1e-2);
  EXPECT_NEAR (fpfh_histogram[16], 16.2767,  1e-2);
  EXPECT_NEAR (fpfh_histogram[17], 12.251 ,  1e-2);
  EXPECT_NEAR (fpfh_histogram[18], 10.354,   1e-2);
  EXPECT_NEAR (fpfh_histogram[19], 6.65578,  1e-2);
  EXPECT_NEAR (fpfh_histogram[20], 6.1437 ,  1e-2);
  EXPECT_NEAR (fpfh_histogram[21], 5.83341,  1e-2);
  EXPECT_NEAR (fpfh_histogram[22], 1.08809,  1e-2);
  EXPECT_NEAR (fpfh_histogram[23], 3.34133,  1e-2);
  EXPECT_NEAR (fpfh_histogram[24], 5.59236,  1e-2);
  EXPECT_NEAR (fpfh_histogram[25], 5.6355 ,  1e-2);
  EXPECT_NEAR (fpfh_histogram[26], 3.03257,  1e-2);
  EXPECT_NEAR (fpfh_histogram[27], 1.37437,  1e-2);
  EXPECT_NEAR (fpfh_histogram[28], 7.99746,  1e-2);
  EXPECT_NEAR (fpfh_histogram[29], 18.0343,  1e-2);
  EXPECT_NEAR (fpfh_histogram[30], 23.691 ,  1e-2);
  EXPECT_NEAR (fpfh_histogram[31], 19.8475,  1e-2);
  EXPECT_NEAR (fpfh_histogram[32], 10.3655,  1e-2);

  // Object
  PointCloud<FPFHSignature33>::Ptr fpfhs (new PointCloud<FPFHSignature33> ());
  pcl::IndicesPtr indicesptr (new pcl::Indices (indices));

  // set parameters
  fpfh.setInputCloud (cloud);
  fpfh.setNrSubdivisions (11, 11, 11);
  fpfh.setIndices (indicesptr);
  fpfh.setSearchMethod (tree);
  fpfh.setKSearch (static_cast<int> (indices.size ()));

  // estimate
  fpfh.compute (*fpfhs);
  EXPECT_EQ (fpfhs->size (), indices.size ());

  EXPECT_NEAR ((*fpfhs)[0].histogram[0],  1.58591, 1e-2);
  EXPECT_NEAR ((*fpfhs)[0].histogram[1],  1.68365, 1e-2);
  EXPECT_NEAR ((*fpfhs)[0].histogram[2],  6.71   , 1e-2);
  EXPECT_NEAR ((*fpfhs)[0].histogram[3],  23.0717, 1e-2);
  EXPECT_NEAR ((*fpfhs)[0].histogram[4],  33.3844, 1e-2);
  EXPECT_NEAR ((*fpfhs)[0].histogram[5],  20.4002, 1e-2);
  EXPECT_NEAR ((*fpfhs)[0].histogram[6],  7.31067, 1e-2);
  EXPECT_NEAR ((*fpfhs)[0].histogram[7],  1.02635, 1e-2);
  EXPECT_NEAR ((*fpfhs)[0].histogram[8],  0.48591, 1e-2);
  EXPECT_NEAR ((*fpfhs)[0].histogram[9],  1.47069, 1e-2);
  EXPECT_NEAR ((*fpfhs)[0].histogram[10], 2.87061, 1e-2);
  EXPECT_NEAR ((*fpfhs)[0].histogram[11], 1.78321, 1e-2);
  EXPECT_NEAR ((*fpfhs)[0].histogram[12], 4.30795, 1e-2);
  EXPECT_NEAR ((*fpfhs)[0].histogram[13], 7.05514, 1e-2);
  EXPECT_NEAR ((*fpfhs)[0].histogram[14], 9.37615, 1e-2);
  EXPECT_NEAR ((*fpfhs)[0].histogram[15], 17.963 , 1e-2);
  EXPECT_NEAR ((*fpfhs)[0].histogram[16], 18.2801, 1e-2);
  EXPECT_NEAR ((*fpfhs)[0].histogram[17], 14.2766, 1e-2);
  EXPECT_NEAR ((*fpfhs)[0].histogram[18], 10.8542, 1e-2);
  EXPECT_NEAR ((*fpfhs)[0].histogram[19], 6.07925, 1e-2);
  EXPECT_NEAR ((*fpfhs)[0].histogram[20], 5.28565, 1e-2);
  EXPECT_NEAR ((*fpfhs)[0].histogram[21], 4.73887, 1e-2);
  EXPECT_NEAR ((*fpfhs)[0].histogram[22], 0.56984, 1e-2);
  EXPECT_NEAR ((*fpfhs)[0].histogram[23], 3.29826, 1e-2);
  EXPECT_NEAR ((*fpfhs)[0].histogram[24], 5.28156, 1e-2);
  EXPECT_NEAR ((*fpfhs)[0].histogram[25], 5.26939, 1e-2);
  EXPECT_NEAR ((*fpfhs)[0].histogram[26], 3.13191, 1e-2);
  EXPECT_NEAR ((*fpfhs)[0].histogram[27], 1.74453, 1e-2);
  EXPECT_NEAR ((*fpfhs)[0].histogram[28], 9.41971, 1e-2);
  EXPECT_NEAR ((*fpfhs)[0].histogram[29], 21.5894, 1e-2);
  EXPECT_NEAR ((*fpfhs)[0].histogram[30], 24.6302, 1e-2);
  EXPECT_NEAR ((*fpfhs)[0].histogram[31], 17.7764, 1e-2);
  EXPECT_NEAR ((*fpfhs)[0].histogram[32], 7.28878, 1e-2);

  // Test results when setIndices and/or setSearchSurface are used

  pcl::IndicesPtr test_indices (new pcl::Indices (0));
  for (std::size_t i = 0; i < cloud->size (); i+=3)
    test_indices->push_back (static_cast<int> (i));

  testIndicesAndSearchSurface<FPFHEstimation, PointT, PointT, FPFHSignature33>
  (cloud, cloud, test_indices, 33);
}


//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
TEST (PCL, VFHEstimation)
{
  using pcl::VFHSignature308;

  // Object
  pcl::VFHEstimation<PointT, PointT, VFHSignature308> vfh;
  PointCloud<VFHSignature308>::Ptr vfhs (new PointCloud<VFHSignature308> ());
  pcl::IndicesPtr indicesptr (new pcl::Indices (indices));

  // set parameters
  vfh.setInputCloud (cloud);
  vfh.setInputNormals (cloud);
  vfh.setIndices (indicesptr);
  vfh.setSearchMethod (tree);

  // estimate
  vfh.compute (*vfhs);
  EXPECT_EQ (int (vfhs->size ()), 1);

  //for (std::size_t d = 0; d < 308; ++d)
  //  std::cerr << vfhs[0].histogram[d] << std::endl;
}

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
TEST (PCL, GFPFH)
{
  using pcl::PointXYZL;
  using pcl::GFPFHSignature16;

  PointCloud<PointXYZL>::Ptr cloud (new PointCloud<PointXYZL>());

  const unsigned num_classes = 3;

  // Build a cubic shape with a hole and changing labels.
  for (int z = -10; z < 10; ++z)
    for (int y = -10; y < 10; ++y)
      for (int x = -10; x < 10; ++x)
      {
        if (x >= -9 && x < 9 && y >= -9 && y < 9 && z >= -9 && z < 9)
          continue;
        unsigned label = 1 + (std::abs (x+y+z) % num_classes);
        PointXYZL p;
        p.label = label;
        p.x = static_cast<float> (x);
        p.y = static_cast<float> (y);
        p.z = static_cast<float> (z);
        cloud->points.push_back (p);
      }
  cloud->width = cloud->size ();
  cloud->height = 1;

  pcl::GFPFHEstimation<PointXYZL, PointXYZL, GFPFHSignature16> gfpfh;
  gfpfh.setNumberOfClasses (num_classes);
  gfpfh.setOctreeLeafSize (2);
  gfpfh.setInputCloud (cloud);
  gfpfh.setInputLabels (cloud);
  PointCloud<GFPFHSignature16> descriptor;
  gfpfh.compute (descriptor);

  const float ref_values[] = { 1877, 6375, 5361, 14393, 6674, 2471, 2248, 2753, 3117, 4585, 14388, 32407, 15122, 3061, 3202, 794 };

  EXPECT_EQ (descriptor.size (), 1);
  for (std::size_t i = 0; i < std::size_t (descriptor[0].descriptorSize ()); ++i)
  {
    EXPECT_EQ (descriptor[0].histogram[i], ref_values[i]);
  }
}

/* ---[ */
int
main (int argc, char** argv)
{
  if (argc < 2)
  {
    std::cerr << "No test file given. Please download `bun0.pcd` and pass its path to the test." << std::endl;
    return (1);
  }

  if (pcl::io::loadPCDFile<PointT> (argv[1], *cloud) < 0)
  {
    std::cerr << "Failed to read test file. Please download `bun0.pcd` and pass its path to the test." << std::endl;
    return (1);
  }


  indices.reserve (cloud->size ());
  for (std::size_t i = 0; i < cloud->size (); ++i)
    indices.push_back (static_cast<int> (i));

  tree.reset (new pcl::search::KdTree<PointT> (false));
  tree->setInputCloud (cloud);

  testing::InitGoogleTest (&argc, argv);
  return (RUN_ALL_TESTS ());
}
/* ]--- */