1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
|
/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2012, Willow Garage, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*
*/
#include <pcl/test/gtest.h>
#include <pcl/point_cloud.h>
#include <pcl/features/normal_3d.h>
#include <pcl/features/ppf.h>
#include <pcl/io/pcd_io.h>
using namespace pcl;
using namespace pcl::io;
using KdTreePtr = search::KdTree<PointXYZ>::Ptr;
PointCloud<PointXYZ> cloud;
pcl::Indices indices;
KdTreePtr tree;
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
TEST (PCL, PPFEstimation)
{
// Estimate normals
NormalEstimation<PointXYZ, Normal> normal_estimation;
PointCloud<Normal>::Ptr normals (new PointCloud<Normal> ());
normal_estimation.setInputCloud (cloud.makeShared ());
pcl::IndicesPtr indicesptr (new pcl::Indices (indices));
normal_estimation.setIndices (indicesptr);
normal_estimation.setSearchMethod (tree);
normal_estimation.setKSearch (10); // Use 10 nearest neighbors to estimate the normals
normal_estimation.compute (*normals);
PPFEstimation <PointXYZ, Normal, PPFSignature> ppf_estimation;
ppf_estimation.setInputCloud (cloud.makeShared ());
ppf_estimation.setInputNormals (normals);
PointCloud<PPFSignature>::Ptr feature_cloud (new PointCloud<PPFSignature> ());
ppf_estimation.compute (*feature_cloud);
// Check for size of output
EXPECT_EQ (feature_cloud->size (), indices.size () * cloud.size ());
// Now check for a few values in the feature cloud
EXPECT_TRUE (std::isnan ((*feature_cloud)[0].f1));
EXPECT_TRUE (std::isnan ((*feature_cloud)[0].f2));
EXPECT_TRUE (std::isnan ((*feature_cloud)[0].f3));
EXPECT_TRUE (std::isnan ((*feature_cloud)[0].f4));
EXPECT_TRUE (std::isnan ((*feature_cloud)[0].alpha_m));
EXPECT_NEAR ((*feature_cloud)[15127].f1, -2.51637, 1e-4);
EXPECT_NEAR ((*feature_cloud)[15127].f2, -0.00365916, 1e-4);
EXPECT_NEAR ((*feature_cloud)[15127].f3, -0.521141, 1e-4);
EXPECT_NEAR ((*feature_cloud)[15127].f4, 0.0106809, 1e-4);
EXPECT_NEAR ((*feature_cloud)[15127].alpha_m, -0.255664, 1e-4);
EXPECT_NEAR ((*feature_cloud)[30254].f1, 0.185142, 1e-4);
EXPECT_NEAR ((*feature_cloud)[30254].f2, 0.0425001, 1e-4);
EXPECT_NEAR ((*feature_cloud)[30254].f3, -0.191276, 1e-4);
EXPECT_NEAR ((*feature_cloud)[30254].f4, 0.0138508, 1e-4);
EXPECT_NEAR ((*feature_cloud)[30254].alpha_m, 2.42955, 1e-4);
EXPECT_NEAR ((*feature_cloud)[45381].f1, -1.96263, 1e-4);
EXPECT_NEAR ((*feature_cloud)[45381].f2, -0.431919, 1e-4);
EXPECT_NEAR ((*feature_cloud)[45381].f3, 0.868716, 1e-4);
EXPECT_NEAR ((*feature_cloud)[45381].f4, 0.140129, 1e-4);
EXPECT_NEAR ((*feature_cloud)[45381].alpha_m, -1.97276, 1e-4);
}
/* ---[ */
int
main (int argc, char** argv)
{
if (argc < 2)
{
std::cerr << "No test file given. Please download `bun0.pcd` and pass its path to the test." << std::endl;
return (-1);
}
if (loadPCDFile<PointXYZ> (argv[1], cloud) < 0)
{
std::cerr << "Failed to read test file. Please download `bun0.pcd` and pass its path to the test." << std::endl;
return (-1);
}
indices.resize (cloud.size ());
for (int i = 0; i < static_cast<int> (indices.size ()); ++i)
indices[i] = i;
tree.reset (new search::KdTree<PointXYZ> (false));
tree->setInputCloud (cloud.makeShared ());
testing::InitGoogleTest (&argc, argv);
return (RUN_ALL_TESTS ());
}
/* ]--- */
|