File: test_sampling.cpp

package info (click to toggle)
pcl 1.13.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 143,524 kB
  • sloc: cpp: 518,578; xml: 28,792; ansic: 13,676; python: 334; lisp: 93; sh: 49; makefile: 30
file content (286 lines) | stat: -rw-r--r-- 11,360 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
/*
 * Software License Agreement (BSD License)
 *
 *  Point Cloud Library (PCL) - www.pointclouds.org
 *  Copyright (c) 2009-2012, Willow Garage, Inc.
 *  Copyright (c) 2012-, Open Perception, Inc.
 *
 *  All rights reserved.
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.
 *   * Neither the name of the copyright holder(s) nor the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *  POSSIBILITY OF SUCH DAMAGE.
 *
 * $Id: test_filters.cpp 7683 2012-10-23 02:49:03Z rusu $
 *
 */

#include <pcl/test/gtest.h>
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/features/normal_3d.h>
#include <pcl/filters/covariance_sampling.h>
#include <pcl/filters/normal_space.h>
#include <pcl/filters/random_sample.h>


#include <pcl/common/transforms.h>

using namespace pcl;

PointCloud<PointXYZ>::Ptr cloud_walls (new PointCloud<PointXYZ> ()),
                          cloud_turtle (new PointCloud<PointXYZ> ());
PointCloud<PointNormal>::Ptr cloud_walls_normals (new PointCloud<PointNormal> ()),
                             cloud_turtle_normals (new PointCloud<PointNormal> ());


//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
TEST (CovarianceSampling, Filters)
{
  CovarianceSampling<PointNormal, PointNormal> covariance_sampling;
  covariance_sampling.setInputCloud (cloud_walls_normals);
  covariance_sampling.setNormals (cloud_walls_normals);
  covariance_sampling.setNumberOfSamples (static_cast<unsigned int> (cloud_walls_normals->size ()) / 4);
  double cond_num_walls = covariance_sampling.computeConditionNumber ();

  // Conditioning number should be loosely close to the expected number. Adopting 10% of the reference value
  EXPECT_NEAR (113.29773, cond_num_walls, 10.);

  IndicesPtr walls_indices (new pcl::Indices ());
  covariance_sampling.filter (*walls_indices);
  covariance_sampling.setIndices (walls_indices);
  double cond_num_walls_sampled = covariance_sampling.computeConditionNumber ();

  // Conditioning number should be loosely close to the expected number. Adopting 10% of the reference value
  EXPECT_NEAR (22.11506, cond_num_walls_sampled, 2.);

  // Ensure it respects the requested sampling size
  EXPECT_EQ (static_cast<unsigned int> (cloud_walls_normals->size ()) / 4, walls_indices->size ());

  covariance_sampling.setInputCloud (cloud_turtle_normals);
  covariance_sampling.setNormals (cloud_turtle_normals);
  covariance_sampling.setIndices (IndicesPtr ());
  covariance_sampling.setNumberOfSamples (static_cast<unsigned int> (cloud_turtle_normals->size ()) / 8);
  double cond_num_turtle = covariance_sampling.computeConditionNumber ();

  // Conditioning number should be loosely close to the expected number
  EXPECT_NEAR (cond_num_turtle, 102982728.6578, 2e4);

  IndicesPtr turtle_indices (new pcl::Indices ());
  covariance_sampling.filter (*turtle_indices);
  covariance_sampling.setIndices (turtle_indices);
  double cond_num_turtle_sampled = covariance_sampling.computeConditionNumber ();

  // Conditioning number should be loosely close to the expected number
  EXPECT_NEAR (cond_num_turtle_sampled, 15697094.2996, 5e3);

  // Ensure it respects the requested sampling size
  EXPECT_EQ (static_cast<unsigned int> (cloud_turtle_normals->size ()) / 8, turtle_indices->size ());
}

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
TEST (NormalSpaceSampling, Filters)
{
  // pcl::Normal is not precompiled by default so we use PointNormal
  auto cloud = pcl::make_shared<PointCloud<PointNormal>> ();
  // generate 16 points (8 unique) with unit norm
  cloud->reserve (16);
  // ensure that the normals have unit norm
  const auto value = std::sqrt(1/3.f);
  for (int unique = 0; unique < 8; ++unique) {
    const auto i = ((unique % 2) < 1) ? -1 : 1;  // points alternate sign
    const auto j = ((unique % 4) < 2) ? -1 : 1;  // 2 points negative, 2 positive
    const auto k = ((unique % 8) < 4) ? -1 : 1;  // first 4 points negative, rest positive
    for (int duplicate = 0; duplicate < 2; ++duplicate) {
      cloud->emplace_back (0.f, 0.f, 0.f, i * value,  j * value, k * value);
    }
  }

  NormalSpaceSampling<PointNormal, PointNormal> normal_space_sampling;
  normal_space_sampling.setInputCloud (cloud);
  normal_space_sampling.setNormals (cloud);
  normal_space_sampling.setBins (2, 2, 2);
  normal_space_sampling.setSeed (0);
  normal_space_sampling.setSample (8);

  IndicesPtr walls_indices  = pcl::make_shared<Indices> ();
  normal_space_sampling.filter (*walls_indices);

  // The orientation space of the normals is divided into 2x2x2 buckets
  // points are samples arbitrarily from each bucket in succession until the
  // requested number of samples is met. This means we expect to see only one index
  // for every two elements in the original array e.g. 0, 3, 4, 6, etc...
  // if 0 is sampled, index 1 can no longer be there and so forth
  std::array<std::set<index_t>, 8> buckets;
  for (const auto index : *walls_indices)
    buckets[index/2].insert (index);


  EXPECT_EQ (8u, walls_indices->size ());
  for (const auto& bucket : buckets)
    EXPECT_EQ (1u, bucket.size ());
}

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
TEST (RandomSample, Filters)
{
  // Test the PointCloud<PointT> method
  // Randomly sample 10 points from cloud
  RandomSample<PointXYZ> sample (true); // Extract removed indices
  sample.setInputCloud (cloud_walls);
  sample.setSample (10);

  // Indices
  pcl::Indices indices;
  sample.filter (indices);

  EXPECT_EQ (int (indices.size ()), 10);

  // Cloud
  PointCloud<PointXYZ> cloud_out;
  sample.filter(cloud_out);

  EXPECT_EQ (int (cloud_out.width), 10);
  EXPECT_EQ (int (indices.size ()), int (cloud_out.size ()));

  for (std::size_t i = 0; i < indices.size () - 1; ++i)
  {
    // Check that indices are sorted
    EXPECT_LT (indices[i], indices[i+1]);
    // Compare original points with sampled indices against sampled points
    EXPECT_NEAR ((*cloud_walls)[indices[i]].x, cloud_out[i].x, 1e-4);
    EXPECT_NEAR ((*cloud_walls)[indices[i]].y, cloud_out[i].y, 1e-4);
    EXPECT_NEAR ((*cloud_walls)[indices[i]].z, cloud_out[i].z, 1e-4);
  }

  IndicesConstPtr removed = sample.getRemovedIndices ();
  EXPECT_EQ (removed->size (), cloud_walls->size () - 10);
  // Organized
  // (sdmiller) Removing for now, to debug the Linux 32-bit segfault offline
  sample.setKeepOrganized (true);
  sample.filter(cloud_out);
  removed = sample.getRemovedIndices ();
  EXPECT_EQ (int (removed->size ()), cloud_walls->size () - 10);
  for (std::size_t i = 0; i < removed->size (); ++i)
  {
    EXPECT_TRUE (std::isnan (cloud_out.at ((*removed)[i]).x));
    EXPECT_TRUE (std::isnan (cloud_out.at ((*removed)[i]).y));
    EXPECT_TRUE (std::isnan (cloud_out.at ((*removed)[i]).z));
  }

  EXPECT_EQ (cloud_out.width, cloud_walls->width);
  EXPECT_EQ (cloud_out.height, cloud_walls->height);
  // Negative
  sample.setKeepOrganized (false);
  sample.setNegative (true);
  sample.filter(cloud_out);
  removed = sample.getRemovedIndices ();
  EXPECT_EQ (int (removed->size ()), 10);
  EXPECT_EQ (int (cloud_out.size ()), int (cloud_walls->size () - 10));

  // Make sure sampling >N works
  sample.setSample (static_cast<unsigned int> (cloud_walls->size ()+10));
  sample.setNegative (false);
  sample.filter (cloud_out);
  EXPECT_EQ (cloud_out.size (), cloud_walls->size ());
  removed = sample.getRemovedIndices ();
  EXPECT_TRUE (removed->empty ());

  // Test the pcl::PCLPointCloud2 method
  // Randomly sample 10 points from cloud
  pcl::PCLPointCloud2::Ptr cloud_blob (new pcl::PCLPointCloud2 ());
  toPCLPointCloud2 (*cloud_walls, *cloud_blob);
  RandomSample<pcl::PCLPointCloud2> sample2;
  sample2.setInputCloud (cloud_blob);
  sample2.setSample (10);

  // Indices
  pcl::Indices indices2;
  sample2.filter (indices2);

  EXPECT_EQ (int (indices2.size ()), 10);

  // Cloud
  pcl::PCLPointCloud2 output_blob;
  sample2.filter (output_blob);

  fromPCLPointCloud2 (output_blob, cloud_out);

  EXPECT_EQ (int (cloud_out.width), 10);
  EXPECT_EQ (int (indices2.size ()), int (cloud_out.size ()));

  for (std::size_t i = 0; i < indices2.size () - 1; ++i)
  {
    // Check that indices are sorted
    EXPECT_LT (indices2[i], indices2[i+1]);
    // Compare original points with sampled indices against sampled points
    EXPECT_NEAR ((*cloud_walls)[indices2[i]].x, cloud_out[i].x, 1e-4);
    EXPECT_NEAR ((*cloud_walls)[indices2[i]].y, cloud_out[i].y, 1e-4);
    EXPECT_NEAR ((*cloud_walls)[indices2[i]].z, cloud_out[i].z, 1e-4);
  }
}


/* ---[ */
int
main (int argc, char** argv)
{
  // Load two standard PCD files from disk
  if (argc < 3)
  {
    std::cerr << "No test files given. Please download `sac_plane_test.pcd` and 'cturtle.pcd' and pass them path to the test." << std::endl;
    return (-1);
  }

  // Load in the point clouds
  io::loadPCDFile (argv[1], *cloud_walls);
  io::loadPCDFile (argv[2], *cloud_turtle);



  // Compute the normals for each cloud, and then clean them up of any NaN values
  NormalEstimation<PointXYZ,PointNormal> ne;
  ne.setInputCloud (cloud_walls);
  ne.setRadiusSearch (0.05);
  ne.compute (*cloud_walls_normals);
  copyPointCloud (*cloud_walls, *cloud_walls_normals);

  pcl::Indices aux_indices;
  removeNaNFromPointCloud (*cloud_walls_normals, *cloud_walls_normals, aux_indices);
  removeNaNNormalsFromPointCloud (*cloud_walls_normals, *cloud_walls_normals, aux_indices);

  ne = NormalEstimation<PointXYZ, PointNormal> ();
  ne.setInputCloud (cloud_turtle);
  ne.setKSearch (5);
  ne.compute (*cloud_turtle_normals);
  copyPointCloud (*cloud_turtle, *cloud_turtle_normals);
  removeNaNFromPointCloud (*cloud_turtle_normals, *cloud_turtle_normals, aux_indices);
  removeNaNNormalsFromPointCloud (*cloud_turtle_normals, *cloud_turtle_normals, aux_indices);

  testing::InitGoogleTest (&argc, argv);
  return (RUN_ALL_TESTS ());
}
/* ]--- */