1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
|
/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2009-2012, Willow Garage, Inc.
* Copyright (c) 2012-, Open Perception, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id: test_filters.cpp 7683 2012-10-23 02:49:03Z rusu $
*
*/
#include <pcl/test/gtest.h>
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/features/normal_3d.h>
#include <pcl/filters/covariance_sampling.h>
#include <pcl/filters/normal_space.h>
#include <pcl/filters/random_sample.h>
#include <pcl/common/transforms.h>
using namespace pcl;
PointCloud<PointXYZ>::Ptr cloud_walls (new PointCloud<PointXYZ> ()),
cloud_turtle (new PointCloud<PointXYZ> ());
PointCloud<PointNormal>::Ptr cloud_walls_normals (new PointCloud<PointNormal> ()),
cloud_turtle_normals (new PointCloud<PointNormal> ());
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
TEST (CovarianceSampling, Filters)
{
CovarianceSampling<PointNormal, PointNormal> covariance_sampling;
covariance_sampling.setInputCloud (cloud_walls_normals);
covariance_sampling.setNormals (cloud_walls_normals);
covariance_sampling.setNumberOfSamples (static_cast<unsigned int> (cloud_walls_normals->size ()) / 4);
double cond_num_walls = covariance_sampling.computeConditionNumber ();
// Conditioning number should be loosely close to the expected number. Adopting 10% of the reference value
EXPECT_NEAR (113.29773, cond_num_walls, 10.);
IndicesPtr walls_indices (new pcl::Indices ());
covariance_sampling.filter (*walls_indices);
covariance_sampling.setIndices (walls_indices);
double cond_num_walls_sampled = covariance_sampling.computeConditionNumber ();
// Conditioning number should be loosely close to the expected number. Adopting 10% of the reference value
EXPECT_NEAR (22.11506, cond_num_walls_sampled, 2.);
// Ensure it respects the requested sampling size
EXPECT_EQ (static_cast<unsigned int> (cloud_walls_normals->size ()) / 4, walls_indices->size ());
covariance_sampling.setInputCloud (cloud_turtle_normals);
covariance_sampling.setNormals (cloud_turtle_normals);
covariance_sampling.setIndices (IndicesPtr ());
covariance_sampling.setNumberOfSamples (static_cast<unsigned int> (cloud_turtle_normals->size ()) / 8);
double cond_num_turtle = covariance_sampling.computeConditionNumber ();
// Conditioning number should be loosely close to the expected number
EXPECT_NEAR (cond_num_turtle, 102982728.6578, 2e4);
IndicesPtr turtle_indices (new pcl::Indices ());
covariance_sampling.filter (*turtle_indices);
covariance_sampling.setIndices (turtle_indices);
double cond_num_turtle_sampled = covariance_sampling.computeConditionNumber ();
// Conditioning number should be loosely close to the expected number
EXPECT_NEAR (cond_num_turtle_sampled, 15697094.2996, 5e3);
// Ensure it respects the requested sampling size
EXPECT_EQ (static_cast<unsigned int> (cloud_turtle_normals->size ()) / 8, turtle_indices->size ());
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
TEST (NormalSpaceSampling, Filters)
{
// pcl::Normal is not precompiled by default so we use PointNormal
auto cloud = pcl::make_shared<PointCloud<PointNormal>> ();
// generate 16 points (8 unique) with unit norm
cloud->reserve (16);
// ensure that the normals have unit norm
const auto value = std::sqrt(1/3.f);
for (int unique = 0; unique < 8; ++unique) {
const auto i = ((unique % 2) < 1) ? -1 : 1; // points alternate sign
const auto j = ((unique % 4) < 2) ? -1 : 1; // 2 points negative, 2 positive
const auto k = ((unique % 8) < 4) ? -1 : 1; // first 4 points negative, rest positive
for (int duplicate = 0; duplicate < 2; ++duplicate) {
cloud->emplace_back (0.f, 0.f, 0.f, i * value, j * value, k * value);
}
}
NormalSpaceSampling<PointNormal, PointNormal> normal_space_sampling;
normal_space_sampling.setInputCloud (cloud);
normal_space_sampling.setNormals (cloud);
normal_space_sampling.setBins (2, 2, 2);
normal_space_sampling.setSeed (0);
normal_space_sampling.setSample (8);
IndicesPtr walls_indices = pcl::make_shared<Indices> ();
normal_space_sampling.filter (*walls_indices);
// The orientation space of the normals is divided into 2x2x2 buckets
// points are samples arbitrarily from each bucket in succession until the
// requested number of samples is met. This means we expect to see only one index
// for every two elements in the original array e.g. 0, 3, 4, 6, etc...
// if 0 is sampled, index 1 can no longer be there and so forth
std::array<std::set<index_t>, 8> buckets;
for (const auto index : *walls_indices)
buckets[index/2].insert (index);
EXPECT_EQ (8u, walls_indices->size ());
for (const auto& bucket : buckets)
EXPECT_EQ (1u, bucket.size ());
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
TEST (RandomSample, Filters)
{
// Test the PointCloud<PointT> method
// Randomly sample 10 points from cloud
RandomSample<PointXYZ> sample (true); // Extract removed indices
sample.setInputCloud (cloud_walls);
sample.setSample (10);
// Indices
pcl::Indices indices;
sample.filter (indices);
EXPECT_EQ (int (indices.size ()), 10);
// Cloud
PointCloud<PointXYZ> cloud_out;
sample.filter(cloud_out);
EXPECT_EQ (int (cloud_out.width), 10);
EXPECT_EQ (int (indices.size ()), int (cloud_out.size ()));
for (std::size_t i = 0; i < indices.size () - 1; ++i)
{
// Check that indices are sorted
EXPECT_LT (indices[i], indices[i+1]);
// Compare original points with sampled indices against sampled points
EXPECT_NEAR ((*cloud_walls)[indices[i]].x, cloud_out[i].x, 1e-4);
EXPECT_NEAR ((*cloud_walls)[indices[i]].y, cloud_out[i].y, 1e-4);
EXPECT_NEAR ((*cloud_walls)[indices[i]].z, cloud_out[i].z, 1e-4);
}
IndicesConstPtr removed = sample.getRemovedIndices ();
EXPECT_EQ (removed->size (), cloud_walls->size () - 10);
// Organized
// (sdmiller) Removing for now, to debug the Linux 32-bit segfault offline
sample.setKeepOrganized (true);
sample.filter(cloud_out);
removed = sample.getRemovedIndices ();
EXPECT_EQ (int (removed->size ()), cloud_walls->size () - 10);
for (std::size_t i = 0; i < removed->size (); ++i)
{
EXPECT_TRUE (std::isnan (cloud_out.at ((*removed)[i]).x));
EXPECT_TRUE (std::isnan (cloud_out.at ((*removed)[i]).y));
EXPECT_TRUE (std::isnan (cloud_out.at ((*removed)[i]).z));
}
EXPECT_EQ (cloud_out.width, cloud_walls->width);
EXPECT_EQ (cloud_out.height, cloud_walls->height);
// Negative
sample.setKeepOrganized (false);
sample.setNegative (true);
sample.filter(cloud_out);
removed = sample.getRemovedIndices ();
EXPECT_EQ (int (removed->size ()), 10);
EXPECT_EQ (int (cloud_out.size ()), int (cloud_walls->size () - 10));
// Make sure sampling >N works
sample.setSample (static_cast<unsigned int> (cloud_walls->size ()+10));
sample.setNegative (false);
sample.filter (cloud_out);
EXPECT_EQ (cloud_out.size (), cloud_walls->size ());
removed = sample.getRemovedIndices ();
EXPECT_TRUE (removed->empty ());
// Test the pcl::PCLPointCloud2 method
// Randomly sample 10 points from cloud
pcl::PCLPointCloud2::Ptr cloud_blob (new pcl::PCLPointCloud2 ());
toPCLPointCloud2 (*cloud_walls, *cloud_blob);
RandomSample<pcl::PCLPointCloud2> sample2;
sample2.setInputCloud (cloud_blob);
sample2.setSample (10);
// Indices
pcl::Indices indices2;
sample2.filter (indices2);
EXPECT_EQ (int (indices2.size ()), 10);
// Cloud
pcl::PCLPointCloud2 output_blob;
sample2.filter (output_blob);
fromPCLPointCloud2 (output_blob, cloud_out);
EXPECT_EQ (int (cloud_out.width), 10);
EXPECT_EQ (int (indices2.size ()), int (cloud_out.size ()));
for (std::size_t i = 0; i < indices2.size () - 1; ++i)
{
// Check that indices are sorted
EXPECT_LT (indices2[i], indices2[i+1]);
// Compare original points with sampled indices against sampled points
EXPECT_NEAR ((*cloud_walls)[indices2[i]].x, cloud_out[i].x, 1e-4);
EXPECT_NEAR ((*cloud_walls)[indices2[i]].y, cloud_out[i].y, 1e-4);
EXPECT_NEAR ((*cloud_walls)[indices2[i]].z, cloud_out[i].z, 1e-4);
}
}
/* ---[ */
int
main (int argc, char** argv)
{
// Load two standard PCD files from disk
if (argc < 3)
{
std::cerr << "No test files given. Please download `sac_plane_test.pcd` and 'cturtle.pcd' and pass them path to the test." << std::endl;
return (-1);
}
// Load in the point clouds
io::loadPCDFile (argv[1], *cloud_walls);
io::loadPCDFile (argv[2], *cloud_turtle);
// Compute the normals for each cloud, and then clean them up of any NaN values
NormalEstimation<PointXYZ,PointNormal> ne;
ne.setInputCloud (cloud_walls);
ne.setRadiusSearch (0.05);
ne.compute (*cloud_walls_normals);
copyPointCloud (*cloud_walls, *cloud_walls_normals);
pcl::Indices aux_indices;
removeNaNFromPointCloud (*cloud_walls_normals, *cloud_walls_normals, aux_indices);
removeNaNNormalsFromPointCloud (*cloud_walls_normals, *cloud_walls_normals, aux_indices);
ne = NormalEstimation<PointXYZ, PointNormal> ();
ne.setInputCloud (cloud_turtle);
ne.setKSearch (5);
ne.compute (*cloud_turtle_normals);
copyPointCloud (*cloud_turtle, *cloud_turtle_normals);
removeNaNFromPointCloud (*cloud_turtle_normals, *cloud_turtle_normals, aux_indices);
removeNaNNormalsFromPointCloud (*cloud_turtle_normals, *cloud_turtle_normals, aux_indices);
testing::InitGoogleTest (&argc, argv);
return (RUN_ALL_TESTS ());
}
/* ]--- */
|