1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
|
/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2012, Willow Garage, Inc.
* Copyright (c) 2014-, Open Perception, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <pcl/test/gtest.h>
#include <pcl/pcl_tests.h>
#include <pcl/common/common.h>
#include <pcl/sample_consensus/ransac.h>
#include <pcl/sample_consensus/sac_model_line.h>
#include <pcl/sample_consensus/sac_model_parallel_line.h>
using namespace pcl;
using SampleConsensusModelLinePtr = SampleConsensusModelLine<PointXYZ>::Ptr;
using SampleConsensusModelParallelLinePtr = SampleConsensusModelParallelLine<PointXYZ>::Ptr;
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
TEST (SampleConsensusModelLine, RANSAC)
{
// Use a custom point cloud for these tests until we need something better
PointCloud<PointXYZ> cloud;
cloud.resize (10);
cloud[0].getVector3fMap () << 1.0f, 2.00f, 3.00f;
cloud[1].getVector3fMap () << 4.0f, 5.00f, 6.00f;
cloud[2].getVector3fMap () << 7.0f, 8.00f, 9.00f;
cloud[3].getVector3fMap () << 10.0f, 11.00f, 12.00f;
cloud[4].getVector3fMap () << 13.0f, 14.00f, 15.00f;
cloud[5].getVector3fMap () << 16.0f, 17.00f, 18.00f;
cloud[6].getVector3fMap () << 19.0f, 20.00f, 21.00f;
cloud[7].getVector3fMap () << 22.0f, 23.00f, 24.00f;
cloud[8].getVector3fMap () << -5.0f, 1.57f, 0.75f;
cloud[9].getVector3fMap () << 4.0f, 2.00f, 3.00f;
// Create a shared line model pointer directly
SampleConsensusModelLinePtr model (new SampleConsensusModelLine<PointXYZ> (cloud.makeShared ()));
// Create the RANSAC object
RandomSampleConsensus<PointXYZ> sac (model, 0.001);
// Algorithm tests
bool result = sac.computeModel ();
ASSERT_TRUE (result);
pcl::Indices sample;
sac.getModel (sample);
EXPECT_EQ (2, sample.size ());
pcl::Indices inliers;
sac.getInliers (inliers);
EXPECT_EQ (8, inliers.size ());
Eigen::VectorXf coeff;
sac.getModelCoefficients (coeff);
EXPECT_EQ (6, coeff.size ());
EXPECT_NEAR (1, coeff[4] / coeff[3], 1e-4);
EXPECT_NEAR (1, coeff[5] / coeff[3], 1e-4);
Eigen::VectorXf coeff_refined;
model->optimizeModelCoefficients (inliers, coeff, coeff_refined);
EXPECT_EQ (6, coeff_refined.size ());
EXPECT_NEAR (1, coeff[4] / coeff[3], 1e-4);
EXPECT_NEAR (1, coeff[5] / coeff[3], 1e-4);
// Projection tests
PointCloud<PointXYZ> proj_points;
model->projectPoints (inliers, coeff_refined, proj_points);
EXPECT_XYZ_NEAR (PointXYZ ( 7.0, 8.0, 9.0), proj_points[2], 1e-4);
EXPECT_XYZ_NEAR (PointXYZ (10.0, 11.0, 12.0), proj_points[3], 1e-4);
EXPECT_XYZ_NEAR (PointXYZ (16.0, 17.0, 18.0), proj_points[5], 1e-4);
}
TEST (SampleConsensusModelLine, OnGroundPlane)
{
PointCloud<PointXYZ> cloud;
cloud.resize (10);
// All the points are on the ground plane (z=0).
// The line is parallel to the x axis, so all the inlier points have the same z and y coordinates.
cloud[0].getVector3fMap () << 0.0f, 0.0f, 0.0f;
cloud[1].getVector3fMap () << 1.0f, 0.0f, 0.0f;
cloud[2].getVector3fMap () << 2.0f, 0.0f, 0.0f;
cloud[3].getVector3fMap () << 3.0f, 0.0f, 0.0f;
cloud[4].getVector3fMap () << 4.0f, 0.0f, 0.0f;
cloud[5].getVector3fMap () << 5.0f, 0.0f, 0.0f;
// Outliers
cloud[6].getVector3fMap () << 2.1f, 2.0f, 0.0f;
cloud[7].getVector3fMap () << 5.0f, 4.1f, 0.0f;
cloud[8].getVector3fMap () << 0.4f, 1.3f, 0.0f;
cloud[9].getVector3fMap () << 3.3f, 0.1f, 0.0f;
// Create a shared line model pointer directly
SampleConsensusModelLinePtr model (new SampleConsensusModelLine<PointXYZ> (cloud.makeShared ()));
// Create the RANSAC object
RandomSampleConsensus<PointXYZ> sac (model, 0.001);
// Algorithm tests
bool result = sac.computeModel ();
ASSERT_TRUE (result);
pcl::Indices inliers;
sac.getInliers (inliers);
EXPECT_EQ (6, inliers.size ());
Eigen::VectorXf coeff;
sac.getModelCoefficients (coeff);
EXPECT_EQ (6, coeff.size ());
EXPECT_NE (0, coeff[3]);
EXPECT_NEAR (0, coeff[4], 1e-4);
EXPECT_NEAR (0, coeff[5], 1e-4);
}
TEST (SampleConsensusModelLine, SampleValidationPointsEqual)
{
PointCloud<PointXYZ> cloud;
cloud.resize (3);
// The "cheat point" makes it possible to find a set of valid samples and
// therefore avoids the log message of an unsuccessful sample validation
// being printed a 1000 times without any chance of success.
// The order is chosen such that with a known, fixed rng-state/-seed all
// validation steps are actually exercised.
const pcl::index_t firstKnownEqualPoint = 0;
const pcl::index_t secondKnownEqualPoint = 1;
const pcl::index_t cheatPointIndex = 2;
cloud[firstKnownEqualPoint].getVector3fMap () << 0.1f, 0.0f, 0.0f;
cloud[secondKnownEqualPoint].getVector3fMap () << 0.1f, 0.0f, 0.0f;
cloud[cheatPointIndex].getVector3fMap () << 0.0f, 0.1f, 0.0f; // <-- cheat point
// Create a shared line model pointer directly and explicitly disable the
// random seed for the reasons mentioned above
SampleConsensusModelLinePtr model (
new SampleConsensusModelLine<PointXYZ> (cloud.makeShared (), /* random = */ false));
// Algorithm tests
pcl::Indices samples;
int iterations = 0;
model->getSamples(iterations, samples);
EXPECT_EQ (samples.size(), 2);
// The "cheat point" has to be part of the sample, otherwise something is wrong.
// The best option would be to assert on stderr output here, but that doesn't
// seem to be that simple.
EXPECT_TRUE (std::find(samples.begin (), samples.end (), cheatPointIndex) != samples.end ());
pcl::Indices forcedSamples = {firstKnownEqualPoint, secondKnownEqualPoint};
Eigen::VectorXf modelCoefficients;
EXPECT_FALSE (model->computeModelCoefficients (forcedSamples, modelCoefficients));
}
TEST (SampleConsensusModelLine, SampleValidationPointsValid)
{
PointCloud<PointXYZ> cloud;
cloud.resize (2);
// These two points only differ in one coordinate so this also acts as a
// regression test for 36c2bd6209f87dc7c6f56e2c0314e19f9cab95ec
cloud[0].getVector3fMap () << 0.0f, 0.0f, 0.0f;
cloud[1].getVector3fMap () << 0.1f, 0.0f, 0.0f;
// Create a shared line model pointer directly
SampleConsensusModelLinePtr model (new SampleConsensusModelLine<PointXYZ> (cloud.makeShared ()));
// Algorithm tests
pcl::Indices samples;
int iterations = 0;
model->getSamples(iterations, samples);
EXPECT_EQ (samples.size(), 2);
pcl::Indices forcedSamples = {0, 1};
Eigen::VectorXf modelCoefficients;
EXPECT_TRUE (model->computeModelCoefficients (forcedSamples, modelCoefficients));
}
TEST (SampleConsensusModelLine, SampleValidationNotEnoughSamples)
{
PointCloud<PointXYZ> cloud;
cloud.resize (1);
cloud[0].getVector3fMap () << 0.1f, 0.0f, 0.0f;
// Create a shared line model pointer directly
SampleConsensusModelLinePtr model (new SampleConsensusModelLine<PointXYZ> (cloud.makeShared ()));
// Algorithm tests
pcl::Indices samples;
int iterations = 0;
model->getSamples(iterations, samples);
EXPECT_EQ (samples.size(), 0);
pcl::Indices forcedSamples = {0,};
Eigen::VectorXf modelCoefficients;
EXPECT_FALSE (model->computeModelCoefficients (forcedSamples, modelCoefficients));
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
TEST (SampleConsensusModelParallelLine, RANSAC)
{
PointCloud<PointXYZ> cloud (16, 1);
// Line 1
cloud[0].getVector3fMap () << 1.0f, 2.00f, 3.00f;
cloud[1].getVector3fMap () << 4.0f, 5.00f, 6.00f;
cloud[2].getVector3fMap () << 7.0f, 8.00f, 9.00f;
cloud[3].getVector3fMap () << 10.0f, 11.00f, 12.00f;
cloud[4].getVector3fMap () << 13.0f, 14.00f, 15.00f;
cloud[5].getVector3fMap () << 16.0f, 17.00f, 18.00f;
cloud[6].getVector3fMap () << 19.0f, 20.00f, 21.00f;
cloud[7].getVector3fMap () << 22.0f, 23.00f, 24.00f;
// Random points
cloud[8].getVector3fMap () << -5.0f, 1.57f, 0.75f;
cloud[9].getVector3fMap () << 4.0f, 2.00f, 3.00f;
// Line 2 (parallel to the Z axis)
cloud[10].getVector3fMap () << -1.00f, 5.00f, 0.0f;
cloud[11].getVector3fMap () << -1.05f, 5.01f, 1.0f;
cloud[12].getVector3fMap () << -1.01f, 5.05f, 2.0f;
cloud[13].getVector3fMap () << -1.05f, 5.01f, 3.0f;
cloud[14].getVector3fMap () << -1.01f, 5.05f, 4.0f;
cloud[15].getVector3fMap () << -1.05f, 5.01f, 5.0f;
// Create a shared line model pointer directly
const double eps = 0.1; //angle eps in radians
const Eigen::Vector3f axis (0, 0, 1);
SampleConsensusModelParallelLinePtr model (new SampleConsensusModelParallelLine<PointXYZ> (cloud.makeShared ()));
model->setAxis (axis);
model->setEpsAngle (eps);
// Create the RANSAC object
RandomSampleConsensus<PointXYZ> sac (model, 0.1);
// Algorithm tests
bool result = sac.computeModel ();
ASSERT_TRUE (result);
pcl::Indices sample;
sac.getModel (sample);
EXPECT_EQ (2, sample.size ());
pcl::Indices inliers;
sac.getInliers (inliers);
EXPECT_EQ (6, inliers.size ());
Eigen::VectorXf coeff;
sac.getModelCoefficients (coeff);
EXPECT_EQ (6, coeff.size ());
// Make sure the returned direction respects the angular constraint
double angle_diff = getAngle3D (axis, coeff.tail<3> ());
angle_diff = std::min (angle_diff, M_PI - angle_diff);
EXPECT_GT (eps, angle_diff);
// Projection tests
PointCloud<PointXYZ> proj_points;
model->projectPoints (inliers, coeff, proj_points);
EXPECT_XYZ_NEAR (PointXYZ (-1.05, 5.05, 3.0), proj_points[13], 0.1);
EXPECT_XYZ_NEAR (PointXYZ (-1.05, 5.05, 4.0), proj_points[14], 0.1);
}
int
main (int argc, char** argv)
{
testing::InitGoogleTest (&argc, argv);
return (RUN_ALL_TESTS ());
}
|