1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
|
/*
* Software License Agreement (BSD License)
*
* Copyright (c) 2009, Willow Garage, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id: test_ii_normals.cpp 4084 2012-01-31 02:05:42Z rusu $
*
*/
#include <pcl/test/gtest.h>
#include <random>
#include <pcl/search/brute_force.h>
#include <pcl/search/kdtree.h>
#include <pcl/search/organized.h>
#include <pcl/search/octree.h>
#include <pcl/io/pcd_io.h>
#include <pcl/common/point_tests.h> // for pcl::isFinite
using namespace pcl;
/** \brief if set to value other than 0 -> fine grained output */
#define DEBUG_OUT 1
#define EXCESSIVE_TESTING 0
#define TEST_unorganized_dense_cloud_COMPLETE_KNN 1
#define TEST_unorganized_dense_cloud_VIEW_KNN 1
#define TEST_unorganized_sparse_cloud_COMPLETE_KNN 1
#define TEST_unorganized_sparse_cloud_VIEW_KNN 1
#define TEST_unorganized_grid_cloud_COMPLETE_RADIUS 1
#define TEST_unorganized_dense_cloud_COMPLETE_RADIUS 1
#define TEST_unorganized_dense_cloud_VIEW_RADIUS 1
#define TEST_unorganized_sparse_cloud_COMPLETE_RADIUS 1
#define TEST_unorganized_sparse_cloud_VIEW_RADIUS 1
#define TEST_ORGANIZED_SPARSE_COMPLETE_KNN 1
#define TEST_ORGANIZED_SPARSE_VIEW_KNN 1
#define TEST_ORGANIZED_SPARSE_COMPLETE_RADIUS 1
#define TEST_ORGANIZED_SPARSE_VIEW_RADIUS 1
#if EXCESSIVE_TESTING
/** \brief number of points used for creating unordered point clouds */
const unsigned int unorganized_point_count = 100000;
/** \brief number of search operations on ordered point clouds*/
const unsigned int query_count = 5000;
#else
/** \brief number of points used for creating unordered point clouds */
const unsigned int unorganized_point_count = 1200;
/** \brief number of search operations on ordered point clouds*/
const unsigned int query_count = 100;
#endif
/** \brief organized point cloud*/
PointCloud<PointXYZ>::Ptr organized_sparse_cloud (new PointCloud<PointXYZ>);
/** \brief unorganized point cloud*/
PointCloud<PointXYZ>::Ptr unorganized_dense_cloud (new PointCloud<PointXYZ>);
/** \brief unorganized point cloud*/
PointCloud<PointXYZ>::Ptr unorganized_sparse_cloud (new PointCloud<PointXYZ>);
/** \brief unorganized point cloud*/
PointCloud<PointXYZ>::Ptr unorganized_grid_cloud (new PointCloud<PointXYZ>);
/** \brief random number generator*/
std::mt19937 rng;
/** \brief uniform distributed random number generator for unsigned it in range [0;10]*/
std::uniform_int_distribution<unsigned> rand_uint(0, 10);
/** \brief uniform distributed random number generator for floats in the range [0;1] */
std::uniform_real_distribution<float> rand_float (0.0f, 1.0f);
/** \brief used by the *_VIEW_* tests to use only a subset of points from the point cloud*/
pcl::Indices unorganized_input_indices;
/** \brief used by the *_VIEW_* tests to use only a subset of points from the point cloud*/
pcl::Indices organized_input_indices;
/** \brief instance of brute force search method to be tested*/
pcl::search::BruteForce<pcl::PointXYZ> brute_force;
/** \brief instance of KDTree search method to be tested*/
pcl::search::KdTree<pcl::PointXYZ> KDTree;
/** \brief instance of Octree search method to be tested*/
pcl::search::Octree<pcl::PointXYZ> octree_search (0.1);
/** \brief instance of Organized search method to be tested*/
pcl::search::OrganizedNeighbor<pcl::PointXYZ> organized;
/** \brief list of search methods for unorganized search test*/
std::vector<search::Search<PointXYZ>* > unorganized_search_methods;
/** \brief list of search methods for organized search test*/
std::vector<search::Search<PointXYZ>* > organized_search_methods;
/** \brief lists of indices to be used as query points for various search methods and different cloud types*/
pcl::Indices unorganized_dense_cloud_query_indices;
pcl::Indices unorganized_sparse_cloud_query_indices;
pcl::Indices organized_sparse_query_indices;
/** \briet test whether the result of a search contains unique point ids or not
* @param indices resulting indices from a search
* @param name name of the search method that returned these distances
* @return true if indices are unique, false otherwise
*/
bool testUniqueness (const pcl::Indices& indices, const std::string& name)
{
bool uniqueness = true;
for (unsigned idx1 = 1; idx1 < indices.size () && uniqueness; ++idx1)
{
// check whether resulting indices are unique
for (unsigned idx2 = 0; idx2 < idx1; ++idx2)
{
if (indices [idx1] == indices [idx2])
{
#if DEBUG_OUT
std::cout << name << " search: index is twice at positions: " << idx1 << " (" << indices [idx1] << ") , " << idx2 << " (" << indices [idx2] << ")" << std::endl;
#endif
// can only be set to false anyway -> no sync required
uniqueness = false;
break;
}
}
}
return uniqueness;
}
/** \brief tests whether the ordering of results is ascending on distances
* \param distances resulting distances from a search
* \param name name of the search method that returned these distances
* \return true if distances in weak ascending order, false otherwise
*/
bool testOrder (const std::vector<float>& distances, const std::string& name)
{
bool ordered = true;
for (std::size_t idx1 = 1; idx1 < distances.size (); ++idx1)
{
if (distances [idx1-1] > distances [idx1])
{
#if DEBUG_OUT
std::cout << name << " search: not properly sorted: " << idx1 - 1 << "(" << distances [idx1-1] << ") > "
<< idx1 << "(" << distances [idx1] << ")"<< std::endl;
#endif
ordered = false;
break;
}
}
return ordered;
}
/** \brief test whether the results are from the view (subset of the cloud) given by input_indices and also not Nan
* @param indices_mask defines the subset of allowed points (view) in the result of the search
* @param nan_mask defines a lookup that indicates whether a point at a given position is finite or not
* @param indices result of a search to be tested
* @param name name of search method that returned the result
* @return true if result is valid, false otherwise
*/
template<typename PointT> bool
testResultValidity (const typename PointCloud<PointT>::ConstPtr point_cloud, const std::vector<bool>& indices_mask, const std::vector<bool>& nan_mask, const pcl::Indices& indices, const pcl::Indices& /*input_indices*/, const std::string& name)
{
bool validness = true;
for (const auto &index : indices)
{
if (!indices_mask [index])
{
#if DEBUG_OUT
std::cerr << name << ": result contains an invalid point: " << index << " not in indices list.\n";
// for (vector<int>::const_iterator iIt2 = input_indices.begin (); iIt2 != input_indices.end (); ++iIt2)
// std::cout << *iIt2 << " ";
// std::cout << std::endl;
#endif
validness = false;
break;
}
if (!nan_mask [index])
{
#if DEBUG_OUT
std::cerr << name << ": result contains an invalid point: " << index << " = NaN (" << point_cloud->points [index].x << " , "
<< point_cloud->points [index].y << " , "
<< point_cloud->points [index].z << ")\n";
#endif
validness = false;
break;
}
}
return validness;
}
/** \brief compares two sets of search results
* \param indices1
* \param distances1
* \param name1
* \param indices2
* \param distances2
* \param name2
* \param eps threshold for comparing the distances
* \return true if both sets are the same, false otherwise
*/
bool compareResults (const pcl::Indices& indices1, const std::vector<float>& distances1, const std::string& name1,
const pcl::Indices& indices2, const std::vector<float>& distances2, const std::string& name2, float eps)
{
bool equal = true;
if (indices1.size () != indices2.size ())
{
#if DEBUG_OUT
std::cerr << "size of results between " << name1 << " search and " << name2 << " search do not match " <<indices1.size () << " vs. " << indices2.size () << std::endl;
// for (unsigned idx = 0; idx < std::min (indices1.size (), indices2.size ()); ++idx)
// {
// std::cout << idx <<".\t" << indices1[idx] << "\t(" << distances1[idx] << "),\t" << indices2[idx] << "\t(" << distances2[idx] << ")\n";
// }
// for (unsigned idx = std::min (indices1.size (), indices2.size ()); idx < std::max (indices1.size (), indices2.size ()); ++idx)
// {
// if (idx >= indices1.size ())
// std::cout << idx <<".\t \t ,\t" << indices2[idx] << "\t(" << distances2[idx] << ")\n";
// else
// std::cout << idx <<".\t" << indices1[idx] << "\t(" << distances1[idx] << ")\n";
// }
#endif
equal = false;
}
else
{
for (std::size_t idx = 0; idx < indices1.size (); ++idx)
{
if (indices1[idx] != indices2[idx] && std::abs (distances1[idx] - distances2[idx]) > eps)
{
#if DEBUG_OUT
std::cerr << "results between " << name1 << " search and " << name2 << " search do not match: " << idx << " nearest neighbor: "
<< indices1[idx] << " with distance: " << distances1[idx] << " vs. "
<< indices2[idx] << " with distance: " << distances2[idx] << std::endl;
#endif
equal = false;
break;
}
}
}
return equal;
}
/** \brief does KNN search and tests the results to be unique, valid and ordered. Additionally it test whether all test methods are returning the same results
* \param cloud the input point cloud
* \param search_methods vector of all search methods to be tested
* \param query_indices indices of query points in the point cloud (not necessarily in input_indices)
* \param input_indices indices defining a subset of the point cloud.
*/
template<typename PointT> void
testKNNSearch (typename PointCloud<PointT>::ConstPtr point_cloud, std::vector<search::Search<PointT>*> search_methods,
const pcl::Indices& query_indices, const pcl::Indices& input_indices = pcl::Indices () )
{
std::vector< pcl::Indices >indices (search_methods.size ());
std::vector< std::vector<float> >distances (search_methods.size ());
std::vector<bool> passed (search_methods.size (), true);
std::vector<bool> indices_mask (point_cloud->size (), true);
std::vector<bool> nan_mask (point_cloud->size (), true);
if (!input_indices.empty ())
{
indices_mask.assign (point_cloud->size (), false);
for (const auto &input_index : input_indices)
indices_mask [input_index] = true;
}
// remove also Nans
#pragma omp parallel for \
shared(nan_mask, point_cloud) \
default(none)
for (int pIdx = 0; pIdx < int (point_cloud->size ()); ++pIdx)
{
if (!isFinite (point_cloud->points [pIdx]))
nan_mask [pIdx] = false;
}
pcl::IndicesPtr input_indices_;
if (!input_indices.empty ())
input_indices_.reset (new pcl::Indices (input_indices));
#pragma omp parallel for \
shared(input_indices, input_indices_, point_cloud, search_methods) \
default(none)
for (int sIdx = 0; sIdx < int (search_methods.size ()); ++sIdx)
search_methods [sIdx]->setInputCloud (point_cloud, input_indices_);
// test knn values from 1, 8, 64, 512
for (unsigned knn = 1; knn <= 512; knn <<= 3)
{
// find nn for each point in the cloud
for (const auto &query_index : query_indices)
{
#pragma omp parallel for \
shared(indices, input_indices, indices_mask, distances, knn, nan_mask, passed, point_cloud, query_index, search_methods) \
default(none)
for (int sIdx = 0; sIdx < int (search_methods.size ()); ++sIdx)
{
search_methods [sIdx]->nearestKSearch ((*point_cloud)[query_index], knn, indices [sIdx], distances [sIdx]);
passed [sIdx] = passed [sIdx] && testUniqueness (indices [sIdx], search_methods [sIdx]->getName ());
passed [sIdx] = passed [sIdx] && testOrder (distances [sIdx], search_methods [sIdx]->getName ());
passed [sIdx] = passed [sIdx] && testResultValidity<PointT>(point_cloud, indices_mask, nan_mask, indices [sIdx], input_indices, search_methods [sIdx]->getName ());
}
// compare results to each other
#pragma omp parallel for \
shared(distances, indices, passed, search_methods) \
default(none)
for (int sIdx = 1; sIdx < int (search_methods.size ()); ++sIdx)
{
passed [sIdx] = passed [sIdx] && compareResults (indices [0], distances [0], search_methods [0]->getName (),
indices [sIdx], distances [sIdx], search_methods [sIdx]->getName (), 1e-6f);
}
}
}
for (std::size_t sIdx = 0; sIdx < search_methods.size (); ++sIdx)
{
std::cout << search_methods [sIdx]->getName () << ": " << (passed[sIdx]?"passed":"failed") << std::endl;
EXPECT_TRUE (passed [sIdx]);
}
}
/** \brief does radius search and tests the results to be unique, valid and ordered. Additionally it test whether all test methods are returning the same results
* \param cloud the input point cloud
* \param search_methods vector of all search methods to be tested
* \param query_indices indices of query points in the point cloud (not necessarily in input_indices)
* \param input_indices indices defining a subset of the point cloud.
*/
template<typename PointT> void
testRadiusSearch (typename PointCloud<PointT>::ConstPtr point_cloud, std::vector<search::Search<PointT>*> search_methods,
const pcl::Indices& query_indices, const pcl::Indices& input_indices = pcl::Indices ())
{
std::vector< pcl::Indices >indices (search_methods.size ());
std::vector< std::vector<float> >distances (search_methods.size ());
std::vector<bool> passed (search_methods.size (), true);
std::vector<bool> indices_mask (point_cloud->size (), true);
std::vector<bool> nan_mask (point_cloud->size (), true);
if (!input_indices.empty ())
{
indices_mask.assign (point_cloud->size (), false);
for (const auto &input_index : input_indices)
indices_mask [input_index] = true;
}
// remove also Nans
#pragma omp parallel for \
default(none) \
shared(nan_mask, point_cloud)
for (int pIdx = 0; pIdx < int (point_cloud->size ()); ++pIdx)
{
if (!isFinite (point_cloud->points [pIdx]))
nan_mask [pIdx] = false;
}
pcl::IndicesPtr input_indices_;
if (!input_indices.empty ())
input_indices_.reset (new pcl::Indices (input_indices));
#pragma omp parallel for \
default(none) \
shared(input_indices_, point_cloud, search_methods)
for (int sIdx = 0; sIdx < int (search_methods.size ()); ++sIdx)
search_methods [sIdx]->setInputCloud (point_cloud, input_indices_);
// test radii 0.01, 0.02, 0.04, 0.08
for (float radius = 0.01f; radius < 0.1f; radius *= 2.0f)
{
//std::cout << radius << std::endl;
// find nn for each point in the cloud
for (const auto &query_index : query_indices)
{
#pragma omp parallel for \
default(none) \
shared(distances, indices, indices_mask, input_indices, nan_mask, passed, point_cloud, radius, query_index, search_methods)
for (int sIdx = 0; sIdx < static_cast<int> (search_methods.size ()); ++sIdx)
{
search_methods [sIdx]->radiusSearch ((*point_cloud)[query_index], radius, indices [sIdx], distances [sIdx], 0);
passed [sIdx] = passed [sIdx] && testUniqueness (indices [sIdx], search_methods [sIdx]->getName ());
passed [sIdx] = passed [sIdx] && testOrder (distances [sIdx], search_methods [sIdx]->getName ());
passed [sIdx] = passed [sIdx] && testResultValidity<PointT>(point_cloud, indices_mask, nan_mask, indices [sIdx], input_indices, search_methods [sIdx]->getName ());
}
// compare results to each other
#pragma omp parallel for \
default(none) \
shared(distances, indices, passed, search_methods, radius)
for (int sIdx = 1; sIdx < static_cast<int> (search_methods.size ()); ++sIdx)
{
const bool same_results = compareResults (indices [0], distances [0], search_methods [0]->getName (),
indices [sIdx], distances [sIdx], search_methods [sIdx]->getName (), 1e-6f);
if (!same_results) {
if ((((indices [0 ].size()+1)==indices [sIdx].size()) && std::abs(*distances [sIdx].crbegin()-radius*radius)<1e-6) ||
(((indices [sIdx].size()+1)==indices [0 ].size()) && std::abs(*distances [0 ].crbegin()-radius*radius)<1e-6)) {
// One result list has one entry more than the other, and this additional entry is very close to the radius boundary.
// Because of numerical inaccuracies, points very close to the boundary may be counted as inside or outside depending
// on the search method. The two result lists will still be considered the same in this case.
} else {
passed [sIdx] = false;
}
}
}
}
}
for (std::size_t sIdx = 0; sIdx < search_methods.size (); ++sIdx)
{
std::cout << search_methods [sIdx]->getName () << ": " << (passed[sIdx]?"passed":"failed") << std::endl;
EXPECT_TRUE (passed [sIdx]);
}
}
#if TEST_unorganized_dense_cloud_COMPLETE_KNN
// Test search on unorganized point clouds
TEST (PCL, unorganized_dense_cloud_Complete_KNN)
{
testKNNSearch (unorganized_dense_cloud, unorganized_search_methods, unorganized_dense_cloud_query_indices);
}
#endif
#if TEST_unorganized_dense_cloud_VIEW_KNN
// Test search on unorganized point clouds
TEST (PCL, unorganized_dense_cloud_View_KNN)
{
testKNNSearch (unorganized_dense_cloud, unorganized_search_methods, unorganized_dense_cloud_query_indices, unorganized_input_indices);
}
#endif
#if TEST_unorganized_sparse_cloud_COMPLETE_KNN
// Test search on unorganized point clouds
TEST (PCL, unorganized_sparse_cloud_Complete_KNN)
{
testKNNSearch (unorganized_sparse_cloud, unorganized_search_methods, unorganized_sparse_cloud_query_indices);
}
#endif
#if TEST_unorganized_sparse_cloud_VIEW_KNN
TEST (PCL, unorganized_sparse_cloud_View_KNN)
{
testKNNSearch (unorganized_sparse_cloud, unorganized_search_methods, unorganized_sparse_cloud_query_indices, unorganized_input_indices);
}
#endif
#if TEST_unorganized_dense_cloud_COMPLETE_RADIUS
// Test search on unorganized point clouds
TEST (PCL, unorganized_dense_cloud_Complete_Radius)
{
testRadiusSearch (unorganized_dense_cloud, unorganized_search_methods, unorganized_dense_cloud_query_indices);
}
#endif
#if TEST_unorganized_grid_cloud_COMPLETE_RADIUS
// Test search on unorganized point clouds in a grid
TEST (PCL, unorganized_grid_cloud_Complete_Radius)
{
pcl::Indices query_indices;
query_indices.reserve (query_count);
unsigned skip = static_cast<unsigned> (unorganized_grid_cloud->size ()) / query_count;
for (unsigned idx = 0; idx < unorganized_grid_cloud->size () && query_indices.size () < query_count; ++idx)
if ((rand () % skip) == 0 && isFinite (unorganized_grid_cloud->points [idx]))
query_indices.push_back (idx);
testRadiusSearch (unorganized_grid_cloud, unorganized_search_methods, query_indices);
}
#endif
#if TEST_unorganized_dense_cloud_VIEW_RADIUS
// Test search on unorganized point clouds
TEST (PCL, unorganized_dense_cloud_View_Radius)
{
testRadiusSearch (unorganized_dense_cloud, unorganized_search_methods, unorganized_dense_cloud_query_indices, unorganized_input_indices);
}
#endif
#if TEST_unorganized_sparse_cloud_COMPLETE_RADIUS
// Test search on unorganized point clouds
TEST (PCL, unorganized_sparse_cloud_Complete_Radius)
{
testRadiusSearch (unorganized_sparse_cloud, unorganized_search_methods, unorganized_sparse_cloud_query_indices);
}
#endif
#if TEST_unorganized_sparse_cloud_VIEW_RADIUS
TEST (PCL, unorganized_sparse_cloud_View_Radius)
{
testRadiusSearch (unorganized_sparse_cloud, unorganized_search_methods, unorganized_sparse_cloud_query_indices, unorganized_input_indices);
}
#endif
#if TEST_ORGANIZED_SPARSE_COMPLETE_KNN
TEST (PCL, Organized_Sparse_Complete_KNN)
{
testKNNSearch (organized_sparse_cloud, organized_search_methods, organized_sparse_query_indices);
}
#endif
#if TEST_ORGANIZED_SPARSE_VIEW_KNN
TEST (PCL, Organized_Sparse_View_KNN)
{
testKNNSearch (organized_sparse_cloud, organized_search_methods, organized_sparse_query_indices, organized_input_indices);
}
#endif
#if TEST_ORGANIZED_SPARSE_COMPLETE_RADIUS
TEST (PCL, Organized_Sparse_Complete_Radius)
{
testRadiusSearch (organized_sparse_cloud, organized_search_methods, organized_sparse_query_indices);
}
#endif
#if TEST_ORGANIZED_SPARSE_VIEW_RADIUS
TEST (PCL, Organized_Sparse_View_Radius)
{
testRadiusSearch (organized_sparse_cloud, organized_search_methods, organized_sparse_query_indices, organized_input_indices);
}
#endif
/** \brief create subset of point in cloud to use as query points
* \param[out] query_indices resulting query indices - not guaranteed to have size of query_count but guaranteed not to exceed that value
* \param cloud input cloud required to check for nans and to get number of points
* \param[in] query_count maximum number of query points
*/
void createQueryIndices (pcl::Indices& query_indices, PointCloud<PointXYZ>::ConstPtr point_cloud, unsigned query_count)
{
query_indices.clear ();
query_indices.reserve (query_count);
unsigned skip = static_cast<unsigned> (point_cloud->size ()) / query_count;
for (unsigned idx = 0; idx < point_cloud->size () && query_indices.size () < query_count; ++idx)
if ((rand () % skip) == 0 && isFinite (point_cloud->points [idx]))
query_indices.push_back (idx);
}
/** \brief create an approx 50% view (subset) of a cloud.
* \param indices
* \param max_index highest accented index usually given by cloud->size () - 1
*/
void createIndices (pcl::Indices& indices, unsigned max_index)
{
// ~10% of the input cloud
for (unsigned idx = 0; idx <= max_index; ++idx)
if (rand_uint (rng) == 0)
indices.push_back (idx);
std::uniform_int_distribution<> rand_indices(0, indices.size () - 1);
// shuffle indices -> not ascending index list
for (unsigned idx = 0; idx < max_index; ++idx)
{
const unsigned idx1 = rand_indices (rng);
const unsigned idx2 = rand_indices (rng);
std::swap (indices[idx1], indices[idx2]);
}
}
/* ---[ */
int
main (int argc, char** argv)
{
if (argc < 2)
{
std::cout << "need path to table_scene_mug_stereo_textured.pcd file\n";
return (-1);
}
pcl::io::loadPCDFile (argv [1], *organized_sparse_cloud);
const unsigned int seed = time (nullptr);
srand (seed);
// create unorganized cloud
unorganized_dense_cloud->resize (unorganized_point_count);
unorganized_dense_cloud->height = 1;
unorganized_dense_cloud->width = unorganized_point_count;
unorganized_dense_cloud->is_dense = true;
unorganized_sparse_cloud->resize (unorganized_point_count);
unorganized_sparse_cloud->height = 1;
unorganized_sparse_cloud->width = unorganized_point_count;
unorganized_sparse_cloud->is_dense = false;
PointXYZ point;
for (unsigned pIdx = 0; pIdx < unorganized_point_count; ++pIdx)
{
point.x = rand_float (rng);
point.y = rand_float (rng);
point.z = rand_float (rng);
unorganized_dense_cloud->points [pIdx] = point;
if (rand_uint (rng) == 0)
unorganized_sparse_cloud->points [pIdx].x = unorganized_sparse_cloud->points [pIdx].y = unorganized_sparse_cloud->points [pIdx].z = std::numeric_limits<float>::quiet_NaN ();
else
unorganized_sparse_cloud->points [pIdx] = point;
}
unorganized_grid_cloud->reserve (1000);
unorganized_grid_cloud->height = 1;
unorganized_grid_cloud->width = 1000;
unorganized_grid_cloud->is_dense = true;
// values between 0 and 1
for (unsigned xIdx = 0; xIdx < 10; ++xIdx)
{
for (unsigned yIdx = 0; yIdx < 10; ++yIdx)
{
for (unsigned zIdx = 0; zIdx < 10; ++zIdx)
{
point.x = 0.1f * static_cast<float>(xIdx);
point.y = 0.1f * static_cast<float>(yIdx);
point.z = 0.1f * static_cast<float>(zIdx);
unorganized_grid_cloud->push_back (point);
}
}
}
createIndices (organized_input_indices, static_cast<unsigned> (organized_sparse_cloud->size () - 1));
createIndices (unorganized_input_indices, unorganized_point_count - 1);
brute_force.setSortedResults (true);
KDTree.setSortedResults (true);
octree_search.setSortedResults (true);
organized.setSortedResults (true);
unorganized_search_methods.push_back (&brute_force);
unorganized_search_methods.push_back (&KDTree);
unorganized_search_methods.push_back (&octree_search);
organized_search_methods.push_back (&brute_force);
organized_search_methods.push_back (&KDTree);
organized_search_methods.push_back (&octree_search);
organized_search_methods.push_back (&organized);
createQueryIndices (unorganized_dense_cloud_query_indices, unorganized_dense_cloud, query_count);
createQueryIndices (unorganized_sparse_cloud_query_indices, unorganized_sparse_cloud, query_count);
createQueryIndices (organized_sparse_query_indices, organized_sparse_cloud, query_count);
testing::InitGoogleTest (&argc, argv);
return (RUN_ALL_TESTS ());
}
/* ]--- */
|