1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
|
/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2012-, Open Perception, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id: test_surface.cpp 6579 2012-07-27 18:57:32Z rusu $
*
*/
#include <pcl/test/gtest.h>
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/io/vtk_io.h>
#include <pcl/features/normal_3d.h>
#include <pcl/surface/gp3.h>
#include <pcl/common/common.h>
#include <pcl/io/obj_io.h>
#include <pcl/TextureMesh.h>
#include <pcl/surface/texture_mapping.h>
using namespace pcl;
using namespace pcl::io;
PointCloud<PointXYZ>::Ptr cloud (new PointCloud<PointXYZ>);
PointCloud<PointNormal>::Ptr cloud_with_normals (new PointCloud<PointNormal>);
search::KdTree<PointXYZ>::Ptr tree;
search::KdTree<PointNormal>::Ptr tree2;
// add by ktran to test update functions
PointCloud<PointXYZ>::Ptr cloud1 (new PointCloud<PointXYZ>);
PointCloud<PointNormal>::Ptr cloud_with_normals1 (new PointCloud<PointNormal>);
search::KdTree<PointXYZ>::Ptr tree3;
search::KdTree<PointNormal>::Ptr tree4;
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
TEST (PCL, GreedyProjectionTriangulation)
{
// Init objects
PolygonMesh triangles;
GreedyProjectionTriangulation<PointNormal> gp3;
// Set parameters
gp3.setInputCloud (cloud_with_normals);
gp3.setSearchMethod (tree2);
gp3.setSearchRadius (0.025);
gp3.setMu (2.5);
gp3.setMaximumNearestNeighbors (100);
gp3.setMaximumSurfaceAngle(M_PI/4); // 45 degrees
gp3.setMinimumAngle(M_PI/18); // 10 degrees
gp3.setMaximumAngle(2*M_PI/3); // 120 degrees
gp3.setNormalConsistency(false);
// Reconstruct
gp3.reconstruct (triangles);
//saveVTKFile ("./test/bun0-gp3.vtk", triangles);
EXPECT_EQ (triangles.cloud.width, cloud_with_normals->width);
EXPECT_EQ (triangles.cloud.height, cloud_with_normals->height);
EXPECT_NEAR (int (triangles.polygons.size ()), 685, 5);
// Check triangles
EXPECT_EQ (int (triangles.polygons.at (0).vertices.size ()), 3);
EXPECT_EQ (int (triangles.polygons.at (0).vertices.at (0)), 0);
EXPECT_EQ (int (triangles.polygons.at (0).vertices.at (1)), 12);
EXPECT_EQ (int (triangles.polygons.at (0).vertices.at (2)), 198);
EXPECT_EQ (int (triangles.polygons.at (684).vertices.size ()), 3);
EXPECT_EQ (int (triangles.polygons.at (684).vertices.at (0)), 393);
EXPECT_EQ (int (triangles.polygons.at (684).vertices.at (1)), 394);
EXPECT_EQ (int (triangles.polygons.at (684).vertices.at (2)), 395);
// Additional vertex information
std::vector<int> parts = gp3.getPartIDs();
std::vector<int> states = gp3.getPointStates();
int nr_points = cloud_with_normals->width * cloud_with_normals->height;
EXPECT_EQ (int (parts.size ()), nr_points);
EXPECT_EQ (int (states.size ()), nr_points);
EXPECT_EQ (parts[0], 0);
EXPECT_EQ (states[0], gp3.COMPLETED);
EXPECT_EQ (parts[393], 5);
EXPECT_EQ (states[393], gp3.BOUNDARY);
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
TEST (PCL, GreedyProjectionTriangulation_Merge2Meshes)
{
// check if exist update cloud
if(cloud_with_normals1->width * cloud_with_normals1->height > 0){
// Init objects
PolygonMesh triangles;
PolygonMesh triangles1;
GreedyProjectionTriangulation<PointNormal> gp3;
GreedyProjectionTriangulation<PointNormal> gp31;
// Set parameters
gp3.setInputCloud (cloud_with_normals);
gp3.setSearchMethod (tree2);
gp3.setSearchRadius (0.025);
gp3.setMu (2.5);
gp3.setMaximumNearestNeighbors (100);
gp3.setMaximumSurfaceAngle(M_PI/4); // 45 degrees
gp3.setMinimumAngle(M_PI/18); // 10 degrees
gp3.setMaximumAngle(2*M_PI/3); // 120 degrees
gp3.setNormalConsistency(false);
// for mesh 2
// Set parameters
gp31.setInputCloud (cloud_with_normals1);
gp31.setSearchMethod (tree4);
gp31.setSearchRadius (0.025);
gp31.setMu (2.5);
gp31.setMaximumNearestNeighbors (100);
gp31.setMaximumSurfaceAngle(M_PI/4); // 45 degrees
gp31.setMinimumAngle(M_PI/18); // 10 degrees
gp31.setMaximumAngle(2*M_PI/3); // 120 degrees
gp31.setNormalConsistency(false);
// Reconstruct
//gp3.reconstruct (triangles);
//saveVTKFile ("bun01.vtk", triangles);
//gp31.reconstruct (triangles1);
//saveVTKFile ("bun02.vtk", triangles1);
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
TEST (PCL, UpdateMesh_With_TextureMapping)
{
if(cloud_with_normals1->width * cloud_with_normals1->height > 0){
// Init objects
PolygonMesh triangles;
PolygonMesh triangles1;
GreedyProjectionTriangulation<PointNormal> gp3;
GreedyProjectionTriangulation<PointNormal> gp31;
// Set parameters
gp3.setInputCloud (cloud_with_normals);
gp3.setSearchMethod (tree2);
gp3.setSearchRadius (0.025);
gp3.setMu (2.5);
gp3.setMaximumNearestNeighbors (100);
gp3.setMaximumSurfaceAngle(M_PI/4); // 45 degrees
gp3.setMinimumAngle(M_PI/18); // 10 degrees
gp3.setMaximumAngle(2*M_PI/3); // 120 degrees
gp3.setNormalConsistency(false);
gp3.reconstruct (triangles);
EXPECT_EQ (triangles.cloud.width, cloud_with_normals->width);
EXPECT_EQ (triangles.cloud.height, cloud_with_normals->height);
EXPECT_EQ (int (triangles.polygons.size ()), 685);
// update with texture mapping
// set 2 texture for 2 mesh
std::vector<std::string> tex_files;
tex_files.emplace_back("tex4.jpg");
// initialize texture mesh
TextureMesh tex_mesh;
tex_mesh.cloud = triangles.cloud;
// add the 1st mesh
tex_mesh.tex_polygons.push_back(triangles.polygons);
// update mesh and texture mesh
//gp3.updateMesh(cloud_with_normals1, triangles, tex_mesh);
// set texture for added cloud
//tex_files.push_back("tex8.jpg");
// save updated mesh
//saveVTKFile ("update_bunny.vtk", triangles);
//TextureMapping<PointXYZ> tm;
//// set mesh scale control
//tm.setF(0.01);
//// set vector field
//tm.setVectorField(1, 0, 0);
//TexMaterial tex_material;
//// default texture materials parameters
//tex_material.tex_Ka.r = 0.2f;
//tex_material.tex_Ka.g = 0.2f;
//tex_material.tex_Ka.b = 0.2f;
//tex_material.tex_Kd.r = 0.8f;
//tex_material.tex_Kd.g = 0.8f;
//tex_material.tex_Kd.b = 0.8f;
//tex_material.tex_Ks.r = 1.0f;
//tex_material.tex_Ks.g = 1.0f;
//tex_material.tex_Ks.b = 1.0f;
//tex_material.tex_d = 1.0f;
//tex_material.tex_Ns = 0.0f;
//tex_material.tex_illum = 2;
//// set texture material parameters
//tm.setTextureMaterials(tex_material);
//// set texture files
//tm.setTextureFiles(tex_files);
//// mapping
//tm.mapTexture2Mesh(tex_mesh);
//saveOBJFile ("update_bunny.obj", tex_mesh);
}
}
/* ---[ */
int
main (int argc, char** argv)
{
if (argc < 2)
{
std::cerr << "No test file given. Please download `bun0.pcd` and pass its path to the test." << std::endl;
return (-1);
}
// Load file
pcl::PCLPointCloud2 cloud_blob;
loadPCDFile (argv[1], cloud_blob);
fromPCLPointCloud2 (cloud_blob, *cloud);
// Create search tree
tree.reset (new search::KdTree<PointXYZ> (false));
tree->setInputCloud (cloud);
// Normal estimation
NormalEstimation<PointXYZ, Normal> n;
PointCloud<Normal>::Ptr normals (new PointCloud<Normal> ());
n.setInputCloud (cloud);
//n.setIndices (indices[B);
n.setSearchMethod (tree);
n.setKSearch (20);
n.compute (*normals);
// Concatenate XYZ and normal information
pcl::concatenateFields (*cloud, *normals, *cloud_with_normals);
// Create search tree
tree2.reset (new search::KdTree<PointNormal>);
tree2->setInputCloud (cloud_with_normals);
// Process for update cloud
if(argc == 3){
pcl::PCLPointCloud2 cloud_blob1;
loadPCDFile (argv[2], cloud_blob1);
fromPCLPointCloud2 (cloud_blob1, *cloud1);
// Create search tree
tree3.reset (new search::KdTree<PointXYZ> (false));
tree3->setInputCloud (cloud1);
// Normal estimation
NormalEstimation<PointXYZ, Normal> n1;
PointCloud<Normal>::Ptr normals1 (new PointCloud<Normal> ());
n1.setInputCloud (cloud1);
n1.setSearchMethod (tree3);
n1.setKSearch (20);
n1.compute (*normals1);
// Concatenate XYZ and normal information
pcl::concatenateFields (*cloud1, *normals1, *cloud_with_normals1);
// Create search tree
tree4.reset (new search::KdTree<PointNormal>);
tree4->setInputCloud (cloud_with_normals1);
}
// Testing
testing::InitGoogleTest (&argc, argv);
return (RUN_ALL_TESTS ());
}
/* ]--- */
|