1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
|
/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2012, Willow Garage, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Willow Garage, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*
*/
/*
* obj_rec_ransac_orr_octree.cpp
*
* Created on: Oct 24, 2012
* Author: papazov
*
* Visualizes the specialized octree class used for the ransac-based object
* recognition. Use the left/right arrows to select a full octree leaf which
* will be used to place a sphere at it and to cut the sphere against the
* other full octree leaves which are visualized in yellow.
*/
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/recognition/ransac_based/orr_octree.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <vtkVersion.h>
#include <vtkPolyData.h>
#include <vtkAppendPolyData.h>
#include <vtkPolyDataReader.h>
#include <vtkCubeSource.h>
#include <vtkPointData.h>
#include <vtkRenderWindow.h>
#include <vector>
#include <list>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <thread>
using namespace pcl;
using namespace pcl::visualization;
using namespace pcl::recognition;
using namespace pcl::io;
using namespace std::chrono_literals;
void run (const char *file_name, float voxel_size);
bool vtk_to_pointcloud (const char* file_name, PointCloud<PointXYZ>& pcl_points, PointCloud<Normal>* pcl_normals);
void show_octree (ORROctree* octree, PCLVisualizer& viz, bool show_full_leaves_only);
void node_to_cube (const ORROctree::Node* node, vtkAppendPolyData* additive_octree);
void updateViewer (ORROctree& octree, PCLVisualizer& viz, std::vector<ORROctree::Node*>::iterator leaf);
#define _SHOW_OCTREE_NORMALS_
class CallbackParameters
{
public:
CallbackParameters (ORROctree& octree, PCLVisualizer& viz, std::vector<ORROctree::Node*>::iterator leaf)
: octree_(octree),
viz_(viz),
leaf_(leaf)
{ }
ORROctree& octree_;
PCLVisualizer& viz_;
std::vector<ORROctree::Node*>::iterator leaf_;
};
int main (int argc, char ** argv)
{
if ( argc != 3 )
{
fprintf(stderr, "\nERROR: Syntax is ./pcl_obj_rec_ransac_orr_octree <vtk file> <leaf_size>\n"
"EXAMPLE: ./pcl_obj_rec_ransac_orr_octree ../../test/tum_rabbit.vtk 6\n\n");
return -1;
}
// Get the voxel size
float voxel_size = static_cast<float> (atof (argv[2]));
if ( voxel_size <= 0.0 )
{
fprintf(stderr, "ERROR: leaf_size has to be positive and not %lf\n", voxel_size);
return -1;
}
run(argv[1], voxel_size);
}
//===============================================================================================================================
void keyboardCB (const pcl::visualization::KeyboardEvent &event, void* params_void)
{
auto* params = static_cast<CallbackParameters*> (params_void);
if (event.getKeySym () == "Left" && event.keyUp ())
{
if (params->leaf_ == params->octree_.getFullLeaves ().begin ())
params->leaf_ = params->octree_.getFullLeaves ().end ();
updateViewer(params->octree_, params->viz_, --params->leaf_);
}
else if (event.getKeySym () == "Right" && event.keyUp ())
{
++params->leaf_;
if (params->leaf_ == params->octree_.getFullLeaves ().end ())
params->leaf_ = params->octree_.getFullLeaves ().begin ();
updateViewer (params->octree_, params->viz_, params->leaf_);
}
}
//===============================================================================================================================
void updateViewer (ORROctree& octree, PCLVisualizer& viz, std::vector<ORROctree::Node*>::iterator leaf)
{
viz.removeAllShapes();
const float *b = (*leaf)->getBounds (), *center = (*leaf)->getData ()->getPoint ();
float radius = 0.1f*octree.getRoot ()->getRadius ();
// Add the main leaf as a cube
viz.addCube (b[0], b[1], b[2], b[3], b[4], b[5], 0.0, 0.0, 1.0, "main cube");
// Get all full leaves intersecting a sphere with certain radius
std::list<ORROctree::Node*> intersected_leaves;
octree.getFullLeavesIntersectedBySphere(center, radius, intersected_leaves);
char cube_id[128];
int i = 0;
// Show the cubes
for (const auto &intersected_leaf : intersected_leaves)
{
sprintf(cube_id, "cube %i", ++i);
b = intersected_leaf->getBounds ();
viz.addCube (b[0], b[1], b[2], b[3], b[4], b[5], 1.0, 1.0, 0.0, cube_id);
}
// Get a random full leaf on the sphere defined by 'center' and 'radius'
ORROctree::Node *rand_leaf = octree.getRandomFullLeafOnSphere (center, radius);
if ( rand_leaf )
{
pcl::ModelCoefficients sphere_coeffs;
sphere_coeffs.values.resize (4);
sphere_coeffs.values[0] = rand_leaf->getCenter ()[0];
sphere_coeffs.values[1] = rand_leaf->getCenter ()[1];
sphere_coeffs.values[2] = rand_leaf->getCenter ()[2];
sphere_coeffs.values[3] = 0.5f*(b[1] - b[0]);
viz.addSphere (sphere_coeffs, "random_full_leaf");
}
}
//===============================================================================================================================
void run (const char* file_name, float voxel_size)
{
PointCloud<PointXYZ>::Ptr points_in (new PointCloud<PointXYZ> ());
PointCloud<PointXYZ>::Ptr points_out (new PointCloud<PointXYZ> ());
PointCloud<Normal>::Ptr normals_in (new PointCloud<Normal> ());
PointCloud<Normal>::Ptr normals_out (new PointCloud<Normal> ());
// Get the points and normals from the input vtk file
#ifdef _SHOW_OCTREE_NORMALS_
if ( !vtk_to_pointcloud (file_name, *points_in, &(*normals_in)) )
return;
#else
if ( !vtk_to_pointcloud (file_name, *points_in, NULL) )
return;
#endif
// Build the octree with the desired resolution
ORROctree octree;
if ( !normals_in->empty () )
octree.build (*points_in, voxel_size, &*normals_in);
else
octree.build (*points_in, voxel_size);
// Get the first full leaf in the octree (arbitrary order)
auto leaf = octree.getFullLeaves ().begin ();
// Get the average points in every full octree leaf
octree.getFullLeavesPoints (*points_out);
// Get the average normal at the points in each leaf
if ( !normals_in->empty () )
octree.getNormalsOfFullLeaves (*normals_out);
// The visualizer
PCLVisualizer viz;
// Register a keyboard callback
CallbackParameters params(octree, viz, leaf);
viz.registerKeyboardCallback (keyboardCB, static_cast<void*> (¶ms));
// Add the point clouds
viz.addPointCloud (points_in, "cloud in");
viz.addPointCloud (points_out, "cloud out");
if ( !normals_in->empty () )
viz.addPointCloudNormals<PointXYZ,Normal> (points_out, normals_out, 1, 6.0f, "normals out");
// Change the appearance
viz.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "cloud in");
viz.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 5, "cloud out");
viz.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_COLOR, 1.0, 0.0, 0.0, "cloud out");
// Convert the octree to a VTK poly-data object
// show_octree(&octree, viz, true/*show full leaves only*/);
updateViewer (octree, viz, leaf);
// Enter the main loop
while (!viz.wasStopped ())
{
//main loop of the visualizer
viz.spinOnce (100);
std::this_thread::sleep_for(100ms);
}
}
//===============================================================================================================================
bool vtk_to_pointcloud (const char* file_name, PointCloud<PointXYZ>& pcl_points, PointCloud<Normal>* pcl_normals)
{
std::size_t len = strlen (file_name);
if ( file_name[len-3] != 'v' || file_name[len-2] != 't' || file_name[len-1] != 'k' )
{
fprintf (stderr, "ERROR: we need a .vtk object!\n");
return false;
}
// Load the model
vtkSmartPointer<vtkPolyDataReader> reader = vtkSmartPointer<vtkPolyDataReader>::New ();
reader->SetFileName (file_name);
reader->Update ();
// Get the points
vtkPolyData *vtk_poly = reader->GetOutput ();
vtkPoints *vtk_points = vtk_poly->GetPoints ();
vtkIdType num_points = vtk_points->GetNumberOfPoints ();
double p[3];
pcl_points.resize (num_points);
// Copy the points
for ( vtkIdType i = 0 ; i < num_points ; ++i )
{
vtk_points->GetPoint (i, p);
pcl_points[i].x = static_cast<float> (p[0]);
pcl_points[i].y = static_cast<float> (p[1]);
pcl_points[i].z = static_cast<float> (p[2]);
}
// Check if we have normals
vtkDataArray *vtk_normals = vtk_poly->GetPointData ()->GetNormals ();
if ( vtk_normals && pcl_normals )
{
pcl_normals->resize (num_points);
// Copy the normals
for ( vtkIdType i = 0 ; i < num_points ; ++i )
{
vtk_normals->GetTuple (i, p);
(*pcl_normals)[i].normal_x = static_cast<float> (p[0]);
(*pcl_normals)[i].normal_y = static_cast<float> (p[1]);
(*pcl_normals)[i].normal_z = static_cast<float> (p[2]);
}
}
return true;
}
//===============================================================================================================================
void node_to_cube (const ORROctree::Node* node, vtkAppendPolyData* additive_octree)
{
// Define the cube representing the leaf
const float *b = node->getBounds ();
vtkSmartPointer<vtkCubeSource> cube = vtkSmartPointer<vtkCubeSource>::New ();
cube->SetBounds (b[0], b[1], b[2], b[3], b[4], b[5]);
cube->Update ();
additive_octree->AddInputData (cube->GetOutput ());
}
//===============================================================================================================================
void show_octree (ORROctree* octree, PCLVisualizer& viz, bool show_full_leaves_only)
{
vtkSmartPointer<vtkPolyData> vtk_octree = vtkSmartPointer<vtkPolyData>::New ();
vtkSmartPointer<vtkAppendPolyData> append = vtkSmartPointer<vtkAppendPolyData>::New ();
std::cout << "There are " << octree->getFullLeaves ().size () << " full leaves.\n";
if ( show_full_leaves_only )
{
std::vector<ORROctree::Node*>& full_leaves = octree->getFullLeaves ();
for (const auto &full_leaf : full_leaves)
// Add it to the other cubes
node_to_cube (full_leaf, append);
}
else
{
std::list<ORROctree::Node*> nodes;
nodes.push_back (octree->getRoot ());
while ( !nodes.empty () )
{
ORROctree::Node* node = nodes.front ();
nodes.pop_front ();
// Visualize the node if it has children
if ( node->getChildren () )
{
// Add it to the other cubes
node_to_cube (node, append);
// Add all the children to the working list
for ( int i = 0 ; i < 8 ; ++i )
nodes.push_back (node->getChild (i));
}
// If we arrived at a leaf -> check if it's full and visualize it
else if ( node->getData () )
node_to_cube (node, append);
}
}
// Just print the leaf size
auto first_leaf = octree->getFullLeaves ().begin ();
if ( first_leaf != octree->getFullLeaves ().end () )
printf("leaf size = %f\n", (*first_leaf)->getBounds ()[1] - (*first_leaf)->getBounds ()[0]);
// Save the result
append->Update();
vtk_octree->DeepCopy (append->GetOutput ());
// Add to the visualizer
vtkRenderer *renderer = viz.getRenderWindow ()->GetRenderers ()->GetFirstRenderer ();
vtkSmartPointer<vtkActor> octree_actor = vtkSmartPointer<vtkActor>::New();
vtkSmartPointer<vtkDataSetMapper> mapper = vtkSmartPointer<vtkDataSetMapper>::New ();
mapper->SetInputData (vtk_octree);
octree_actor->SetMapper(mapper);
// Set the appearance & add to the renderer
octree_actor->GetProperty ()->SetColor (1.0, 1.0, 1.0);
octree_actor->GetProperty ()->SetLineWidth (1);
octree_actor->GetProperty ()->SetRepresentationToWireframe ();
renderer->AddActor(octree_actor);
}
//===============================================================================================================================
|