File: outlier_removal.cpp

package info (click to toggle)
pcl 1.13.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 143,524 kB
  • sloc: cpp: 518,578; xml: 28,792; ansic: 13,676; python: 334; lisp: 93; sh: 49; makefile: 30
file content (250 lines) | stat: -rw-r--r-- 9,900 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
/*
 * Software License Agreement (BSD License)
 *
 *  Copyright (c) 2012, Willow Garage, Inc.
 *  All rights reserved.
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.
 *   * Neither the name of the copyright holder(s) nor the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *  POSSIBILITY OF SUCH DAMAGE.
 *
 * $Id$
 *
 */

#include <pcl/PCLPointCloud2.h>
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/console/print.h>
#include <pcl/console/parse.h>
#include <pcl/console/time.h>
#include <pcl/filters/radius_outlier_removal.h>
#include <pcl/filters/statistical_outlier_removal.h>
#include <pcl/filters/extract_indices.h>

using namespace pcl;
using namespace pcl::io;
using namespace pcl::console;

std::string default_method = "radius";

int default_mean_k = 2;
double default_std_dev_mul = 0.0;
int default_negative = 0;

double default_radius = 0.0;
int default_min_pts = 0;

void
printHelp (int, char **argv)
{
  print_error ("Syntax is: %s input.pcd output.pcd <options>\n", argv[0]);
  print_info ("  where options are:\n");
  print_info ("                     -method X = the outlier removal method to be used (options: radius / statistical) (default: ");
  print_value ("%s", default_method.c_str ()); print_info (")\n");
  print_info ("                     -radius X = (RadiusOutlierRemoval) the sphere radius used for determining the k-nearest neighbors (default: ");
  print_value ("%d", default_min_pts); print_info (")\n");
  print_info ("                     -min_pts X = (RadiusOutlierRemoval) the minimum number of neighbors that a point needs to have in the given search radius in order to be considered an inlier (default: ");
  print_value ("%d", default_min_pts); print_info (")\n");
  print_info ("                     -mean_k X = (StatisticalOutlierRemoval only) the number of points to use for mean distance estimation (default: ");
  print_value ("%d", default_mean_k); print_info (")\n");
  print_info ("                     -std_dev_mul X = (StatisticalOutlierRemoval only) the standard deviation multiplier threshold (default: ");
  print_value ("%f", default_std_dev_mul); print_info (")\n\n");
  print_info ("                     -negative X = decides whether the inliers should be returned (1), or the outliers (0). (default: ");
  print_value ("%d", default_negative); print_info (")\n");
  print_info ("                     -keep_organized = keep the filtered points in organized format.\n");
}

bool
loadCloud (const std::string &filename, pcl::PCLPointCloud2 &cloud,
           Eigen::Vector4f &translation, Eigen::Quaternionf &orientation)
{
  TicToc tt;
  print_highlight ("Loading "); print_value ("%s ", filename.c_str ());

  tt.tic ();
  if (loadPCDFile (filename, cloud, translation, orientation) < 0)
    return (false);
  print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", cloud.width * cloud.height); print_info (" points]\n");
  print_info ("Available dimensions: "); print_value ("%s\n", pcl::getFieldsList (cloud).c_str ());

  return (true);
}

void
compute (const pcl::PCLPointCloud2::ConstPtr &input, pcl::PCLPointCloud2 &output,
         const std::string& method,
         int min_pts, double radius,
         int mean_k, double std_dev_mul, bool negative, bool keep_organized)
{

  PointCloud<PointXYZ>::Ptr xyz_cloud_pre (new pcl::PointCloud<PointXYZ> ()),
                            xyz_cloud (new pcl::PointCloud<PointXYZ> ());
  fromPCLPointCloud2 (*input, *xyz_cloud_pre);

  pcl::PointIndices::Ptr removed_indices (new PointIndices),
                         indices (new PointIndices);
  pcl::Indices valid_indices;
  if (keep_organized)
  {
    xyz_cloud = xyz_cloud_pre;
    for (int i = 0; i < int (xyz_cloud->size ()); ++i)
      valid_indices.push_back (i);
  }
  else
    removeNaNFromPointCloud<PointXYZ> (*xyz_cloud_pre, *xyz_cloud, valid_indices);

  TicToc tt;
  tt.tic ();
  PointCloud<PointXYZ>::Ptr xyz_cloud_filtered (new PointCloud<PointXYZ> ());
  if (method == "statistical")
  {
    StatisticalOutlierRemoval<PointXYZ> filter (true);
    filter.setInputCloud (xyz_cloud);
    filter.setMeanK (mean_k);
    filter.setStddevMulThresh (std_dev_mul);
    filter.setNegative (negative);
    filter.setKeepOrganized (keep_organized);
    PCL_INFO ("Computing filtered cloud from %lu points with mean_k %d, std_dev_mul %f, inliers %d ...", xyz_cloud->size (), filter.getMeanK (), filter.getStddevMulThresh (), filter.getNegative ());
    filter.filter (*xyz_cloud_filtered);
    // Get the indices that have been explicitly removed
    filter.getRemovedIndices (*removed_indices);
  }
  else if (method == "radius")
  {
    RadiusOutlierRemoval<PointXYZ> filter (true);
    filter.setInputCloud (xyz_cloud);
    filter.setRadiusSearch (radius);
    filter.setMinNeighborsInRadius (min_pts);
    filter.setNegative (negative);
    filter.setKeepOrganized (keep_organized);
    PCL_INFO ("Computing filtered cloud from %lu points with radius %f, min_pts %d ...", xyz_cloud->size (), radius, min_pts);
    filter.filter (*xyz_cloud_filtered);
    // Get the indices that have been explicitly removed
    filter.getRemovedIndices (*removed_indices);
  }
  else
  {
    PCL_ERROR ("%s is not a valid filter name! Quitting!\n", method.c_str ());
    return;
  }
    
  print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", xyz_cloud_filtered->width * xyz_cloud_filtered->height); print_info (" points, %lu indices removed]\n", removed_indices->indices.size ());

  if (keep_organized)
  {
    pcl::PCLPointCloud2 output_filtered;
    toPCLPointCloud2 (*xyz_cloud_filtered, output_filtered);
    concatenateFields (*input, output_filtered, output);
  }
  else 
  {
    // Make sure we are addressing values in the original index vector
    for (const auto& i : (removed_indices->indices))
      indices->indices.push_back (valid_indices[i]);

    // Extract the indices of the remaining points
    pcl::ExtractIndices<pcl::PCLPointCloud2> ei;
    ei.setInputCloud (input);
    ei.setIndices (indices);
    ei.setNegative (true);
    ei.filter (output);
  }
}

void
saveCloud (const std::string &filename, const pcl::PCLPointCloud2 &output,
           const Eigen::Vector4f &translation, const Eigen::Quaternionf &rotation)
{
  TicToc tt;
  tt.tic ();

  print_highlight ("Saving "); print_value ("%s ", filename.c_str ());

  PCDWriter w;
  w.writeBinaryCompressed (filename, output, translation, rotation);

  print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", output.width * output.height); print_info (" points]\n");
}

/* ---[ */
int
main (int argc, char** argv)
{
  print_info ("Statistical Outlier Removal filtering of a point cloud. For more information, use: %s -h\n", argv[0]);

  if (argc < 3)
  {
    printHelp (argc, argv);
    return (-1);
  }

  // Parse the command line arguments for .pcd files
  std::vector<int> p_file_indices;
  p_file_indices = parse_file_extension_argument (argc, argv, ".pcd");
  if (p_file_indices.size () != 2)
  {
    print_error ("Need one input PCD file and one output PCD file to continue.\n");
    return (-1);
  }

  // Command line parsing
  std::string method = default_method;
  int min_pts = default_min_pts;
  double radius = default_radius;
  int mean_k = default_mean_k;
  double std_dev_mul = default_std_dev_mul;
  int negative = default_negative;
  

  parse_argument (argc, argv, "-method", method);
  parse_argument (argc, argv, "-radius", radius);
  parse_argument (argc, argv, "-min_pts", min_pts);
  parse_argument (argc, argv, "-mean_k", mean_k);
  parse_argument (argc, argv, "-std_dev_mul", std_dev_mul);
  parse_argument (argc, argv, "-negative", negative);
  bool keep_organized = find_switch (argc, argv, "-keep_organized");

  // Load the first file
  Eigen::Vector4f translation;
  Eigen::Quaternionf rotation;
  pcl::PCLPointCloud2::Ptr cloud (new pcl::PCLPointCloud2);
  if (!loadCloud (argv[p_file_indices[0]], *cloud, translation, rotation))
    return (-1);
  
  if (keep_organized && cloud->height == 1)
  {
    print_error ("Point cloud dataset (%s) is not organized (height = %d), but -keep_organized requested!\n", argv[p_file_indices[0]], cloud->height);
    return (-1);
  }

  // Do the smoothing
  pcl::PCLPointCloud2 output;
  compute (cloud, output, method, min_pts, radius, mean_k, std_dev_mul, negative, keep_organized);

  // Save into the second file
  saveCloud (argv[p_file_indices[1]], output, translation, rotation);
}