1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
/*
* Software License Agreement (BSD License)
*
* Copyright (c) 2012, Willow Garage, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*
*/
#include <pcl/PCLPointCloud2.h>
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/console/print.h>
#include <pcl/console/parse.h>
#include <pcl/console/time.h>
#include <pcl/filters/radius_outlier_removal.h>
#include <pcl/filters/statistical_outlier_removal.h>
#include <pcl/filters/extract_indices.h>
using namespace pcl;
using namespace pcl::io;
using namespace pcl::console;
std::string default_method = "radius";
int default_mean_k = 2;
double default_std_dev_mul = 0.0;
int default_negative = 0;
double default_radius = 0.0;
int default_min_pts = 0;
void
printHelp (int, char **argv)
{
print_error ("Syntax is: %s input.pcd output.pcd <options>\n", argv[0]);
print_info (" where options are:\n");
print_info (" -method X = the outlier removal method to be used (options: radius / statistical) (default: ");
print_value ("%s", default_method.c_str ()); print_info (")\n");
print_info (" -radius X = (RadiusOutlierRemoval) the sphere radius used for determining the k-nearest neighbors (default: ");
print_value ("%d", default_min_pts); print_info (")\n");
print_info (" -min_pts X = (RadiusOutlierRemoval) the minimum number of neighbors that a point needs to have in the given search radius in order to be considered an inlier (default: ");
print_value ("%d", default_min_pts); print_info (")\n");
print_info (" -mean_k X = (StatisticalOutlierRemoval only) the number of points to use for mean distance estimation (default: ");
print_value ("%d", default_mean_k); print_info (")\n");
print_info (" -std_dev_mul X = (StatisticalOutlierRemoval only) the standard deviation multiplier threshold (default: ");
print_value ("%f", default_std_dev_mul); print_info (")\n\n");
print_info (" -negative X = decides whether the inliers should be returned (1), or the outliers (0). (default: ");
print_value ("%d", default_negative); print_info (")\n");
print_info (" -keep_organized = keep the filtered points in organized format.\n");
}
bool
loadCloud (const std::string &filename, pcl::PCLPointCloud2 &cloud,
Eigen::Vector4f &translation, Eigen::Quaternionf &orientation)
{
TicToc tt;
print_highlight ("Loading "); print_value ("%s ", filename.c_str ());
tt.tic ();
if (loadPCDFile (filename, cloud, translation, orientation) < 0)
return (false);
print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", cloud.width * cloud.height); print_info (" points]\n");
print_info ("Available dimensions: "); print_value ("%s\n", pcl::getFieldsList (cloud).c_str ());
return (true);
}
void
compute (const pcl::PCLPointCloud2::ConstPtr &input, pcl::PCLPointCloud2 &output,
const std::string& method,
int min_pts, double radius,
int mean_k, double std_dev_mul, bool negative, bool keep_organized)
{
PointCloud<PointXYZ>::Ptr xyz_cloud_pre (new pcl::PointCloud<PointXYZ> ()),
xyz_cloud (new pcl::PointCloud<PointXYZ> ());
fromPCLPointCloud2 (*input, *xyz_cloud_pre);
pcl::PointIndices::Ptr removed_indices (new PointIndices),
indices (new PointIndices);
pcl::Indices valid_indices;
if (keep_organized)
{
xyz_cloud = xyz_cloud_pre;
for (int i = 0; i < int (xyz_cloud->size ()); ++i)
valid_indices.push_back (i);
}
else
removeNaNFromPointCloud<PointXYZ> (*xyz_cloud_pre, *xyz_cloud, valid_indices);
TicToc tt;
tt.tic ();
PointCloud<PointXYZ>::Ptr xyz_cloud_filtered (new PointCloud<PointXYZ> ());
if (method == "statistical")
{
StatisticalOutlierRemoval<PointXYZ> filter (true);
filter.setInputCloud (xyz_cloud);
filter.setMeanK (mean_k);
filter.setStddevMulThresh (std_dev_mul);
filter.setNegative (negative);
filter.setKeepOrganized (keep_organized);
PCL_INFO ("Computing filtered cloud from %lu points with mean_k %d, std_dev_mul %f, inliers %d ...", xyz_cloud->size (), filter.getMeanK (), filter.getStddevMulThresh (), filter.getNegative ());
filter.filter (*xyz_cloud_filtered);
// Get the indices that have been explicitly removed
filter.getRemovedIndices (*removed_indices);
}
else if (method == "radius")
{
RadiusOutlierRemoval<PointXYZ> filter (true);
filter.setInputCloud (xyz_cloud);
filter.setRadiusSearch (radius);
filter.setMinNeighborsInRadius (min_pts);
filter.setNegative (negative);
filter.setKeepOrganized (keep_organized);
PCL_INFO ("Computing filtered cloud from %lu points with radius %f, min_pts %d ...", xyz_cloud->size (), radius, min_pts);
filter.filter (*xyz_cloud_filtered);
// Get the indices that have been explicitly removed
filter.getRemovedIndices (*removed_indices);
}
else
{
PCL_ERROR ("%s is not a valid filter name! Quitting!\n", method.c_str ());
return;
}
print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", xyz_cloud_filtered->width * xyz_cloud_filtered->height); print_info (" points, %lu indices removed]\n", removed_indices->indices.size ());
if (keep_organized)
{
pcl::PCLPointCloud2 output_filtered;
toPCLPointCloud2 (*xyz_cloud_filtered, output_filtered);
concatenateFields (*input, output_filtered, output);
}
else
{
// Make sure we are addressing values in the original index vector
for (const auto& i : (removed_indices->indices))
indices->indices.push_back (valid_indices[i]);
// Extract the indices of the remaining points
pcl::ExtractIndices<pcl::PCLPointCloud2> ei;
ei.setInputCloud (input);
ei.setIndices (indices);
ei.setNegative (true);
ei.filter (output);
}
}
void
saveCloud (const std::string &filename, const pcl::PCLPointCloud2 &output,
const Eigen::Vector4f &translation, const Eigen::Quaternionf &rotation)
{
TicToc tt;
tt.tic ();
print_highlight ("Saving "); print_value ("%s ", filename.c_str ());
PCDWriter w;
w.writeBinaryCompressed (filename, output, translation, rotation);
print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", output.width * output.height); print_info (" points]\n");
}
/* ---[ */
int
main (int argc, char** argv)
{
print_info ("Statistical Outlier Removal filtering of a point cloud. For more information, use: %s -h\n", argv[0]);
if (argc < 3)
{
printHelp (argc, argv);
return (-1);
}
// Parse the command line arguments for .pcd files
std::vector<int> p_file_indices;
p_file_indices = parse_file_extension_argument (argc, argv, ".pcd");
if (p_file_indices.size () != 2)
{
print_error ("Need one input PCD file and one output PCD file to continue.\n");
return (-1);
}
// Command line parsing
std::string method = default_method;
int min_pts = default_min_pts;
double radius = default_radius;
int mean_k = default_mean_k;
double std_dev_mul = default_std_dev_mul;
int negative = default_negative;
parse_argument (argc, argv, "-method", method);
parse_argument (argc, argv, "-radius", radius);
parse_argument (argc, argv, "-min_pts", min_pts);
parse_argument (argc, argv, "-mean_k", mean_k);
parse_argument (argc, argv, "-std_dev_mul", std_dev_mul);
parse_argument (argc, argv, "-negative", negative);
bool keep_organized = find_switch (argc, argv, "-keep_organized");
// Load the first file
Eigen::Vector4f translation;
Eigen::Quaternionf rotation;
pcl::PCLPointCloud2::Ptr cloud (new pcl::PCLPointCloud2);
if (!loadCloud (argv[p_file_indices[0]], *cloud, translation, rotation))
return (-1);
if (keep_organized && cloud->height == 1)
{
print_error ("Point cloud dataset (%s) is not organized (height = %d), but -keep_organized requested!\n", argv[p_file_indices[0]], cloud->height);
return (-1);
}
// Do the smoothing
pcl::PCLPointCloud2 output;
compute (cloud, output, method, min_pts, radius, mean_k, std_dev_mul, negative, keep_organized);
// Save into the second file
saveCloud (argv[p_file_indices[1]], output, translation, rotation);
}
|