1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
|
/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2012-, Open Perception, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <pcl/PCLPointCloud2.h>
#include <pcl/io/pcd_io.h>
#include <pcl/sample_consensus/ransac.h>
#include <pcl/sample_consensus/sac_model_plane.h>
#include <pcl/segmentation/extract_clusters.h>
#include <pcl/console/print.h>
#include <pcl/console/parse.h>
#include <pcl/console/time.h>
#include <boost/filesystem.hpp> // for path, exists, ...
#include <boost/algorithm/string/case_conv.hpp> // for to_upper_copy
using namespace pcl;
using namespace pcl::io;
using namespace pcl::console;
int default_max_iterations = 1000;
double default_threshold = 0.05;
bool default_negative = false;
Eigen::Vector4f translation;
Eigen::Quaternionf orientation;
void
printHelp (int, char **argv)
{
print_error ("Syntax is: %s input.pcd output.pcd <options> [optional_arguments]\n", argv[0]);
print_info (" where options are:\n");
print_info (" -thresh X = set the inlier threshold from the plane to (default: ");
print_value ("%g", default_threshold); print_info (")\n");
print_info (" -max_it X = set the maximum number of RANSAC iterations to X (default: ");
print_value ("%d", default_max_iterations); print_info (")\n");
print_info (" -neg 0/1 = if true (1), instead of the plane, it returns the largest cluster on top of the plane (default: ");
print_value ("%s", default_negative ? "true" : "false"); print_info (")\n");
print_info ("\nOptional arguments are:\n");
print_info (" -input_dir X = batch process all PCD files found in input_dir\n");
print_info (" -output_dir X = save the processed files from input_dir in this directory\n");
}
bool
loadCloud (const std::string &filename, pcl::PCLPointCloud2 &cloud)
{
TicToc tt;
print_highlight ("Loading "); print_value ("%s ", filename.c_str ());
tt.tic ();
if (loadPCDFile (filename, cloud, translation, orientation) < 0)
return (false);
print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", cloud.width * cloud.height); print_info (" points]\n");
print_info ("Available dimensions: "); print_value ("%s\n", getFieldsList (cloud).c_str ());
return (true);
}
void
compute (const pcl::PCLPointCloud2::ConstPtr &input, pcl::PCLPointCloud2 &output,
int max_iterations = 1000, double threshold = 0.05, bool negative = false)
{
// Convert data to PointCloud<T>
PointCloud<PointXYZ>::Ptr xyz (new PointCloud<PointXYZ>);
fromPCLPointCloud2 (*input, *xyz);
// Estimate
TicToc tt;
print_highlight (stderr, "Computing ");
tt.tic ();
// Refine the plane indices
using SampleConsensusModelPlanePtr = SampleConsensusModelPlane<PointXYZ>::Ptr;
SampleConsensusModelPlanePtr model (new SampleConsensusModelPlane<PointXYZ> (xyz));
RandomSampleConsensus<PointXYZ> sac (model, threshold);
sac.setMaxIterations (max_iterations);
bool res = sac.computeModel ();
pcl::Indices inliers;
sac.getInliers (inliers);
Eigen::VectorXf coefficients;
sac.getModelCoefficients (coefficients);
if (!res || inliers.empty ())
{
PCL_ERROR ("No planar model found. Relax thresholds and continue.\n");
return;
}
sac.refineModel (2, 50);
sac.getInliers (inliers);
sac.getModelCoefficients (coefficients);
print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms, plane has : "); print_value ("%lu", inliers.size ()); print_info (" points]\n");
print_info ("Model coefficients: [");
print_value ("%g %g %g %g", coefficients[0], coefficients[1], coefficients[2], coefficients[3]); print_info ("]\n");
// Instead of returning the planar model as a set of inliers, return the outliers, but perform a cluster segmentation first
if (negative)
{
// Remove the plane indices from the data
PointIndices::Ptr everything_but_the_plane (new PointIndices);
std::vector<int> indices_fullset (xyz->size ());
for (int p_it = 0; p_it < static_cast<int> (indices_fullset.size ()); ++p_it)
indices_fullset[p_it] = p_it;
std::sort (inliers.begin (), inliers.end ());
set_difference (indices_fullset.begin (), indices_fullset.end (),
inliers.begin (), inliers.end (),
inserter (everything_but_the_plane->indices, everything_but_the_plane->indices.begin ()));
// Extract largest cluster minus the plane
std::vector<PointIndices> cluster_indices;
EuclideanClusterExtraction<PointXYZ> ec;
ec.setClusterTolerance (0.02); // 2cm
ec.setMinClusterSize (100);
ec.setInputCloud (xyz);
ec.setIndices (everything_but_the_plane);
ec.extract (cluster_indices);
// Convert data back
copyPointCloud (*input, cluster_indices[0].indices, output);
}
else
{
// Convert data back
PointCloud<PointXYZ> output_inliers;
copyPointCloud (*input, inliers, output);
}
}
void
saveCloud (const std::string &filename, const pcl::PCLPointCloud2 &output)
{
TicToc tt;
tt.tic ();
print_highlight ("Saving "); print_value ("%s ", filename.c_str ());
PCDWriter w;
w.writeBinaryCompressed (filename, output, translation, orientation);
print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", output.width * output.height); print_info (" points]\n");
}
int
batchProcess (const std::vector<std::string> &pcd_files, std::string &output_dir, int max_it, double thresh, bool negative)
{
for (const auto &pcd_file : pcd_files)
{
// Load the first file
pcl::PCLPointCloud2::Ptr cloud (new pcl::PCLPointCloud2);
if (!loadCloud (pcd_file, *cloud))
return (-1);
// Perform the feature estimation
pcl::PCLPointCloud2 output;
compute (cloud, output, max_it, thresh, negative);
// Prepare output file name
std::string filename = boost::filesystem::path(pcd_file).filename().string();
// Save into the second file
const std::string filepath = output_dir + '/' + filename;
saveCloud (filepath, output);
}
return (0);
}
/* ---[ */
int
main (int argc, char** argv)
{
print_info ("Estimate the largest planar component using SACSegmentation. For more information, use: %s -h\n", argv[0]);
if (argc < 3)
{
printHelp (argc, argv);
return (-1);
}
bool debug = false;
console::parse_argument (argc, argv, "-debug", debug);
if (debug)
{
print_highlight ("Enabling debug mode.\n");
console::setVerbosityLevel (console::L_DEBUG);
if (!isVerbosityLevelEnabled (L_DEBUG))
PCL_ERROR ("Error enabling debug mode.\n");
}
bool batch_mode = false;
// Command line parsing
int max_it = default_max_iterations;
double thresh = default_threshold;
bool negative = default_negative;
parse_argument (argc, argv, "-max_it", max_it);
parse_argument (argc, argv, "-thresh", thresh);
parse_argument (argc, argv, "-neg", negative);
std::string input_dir, output_dir;
if (parse_argument (argc, argv, "-input_dir", input_dir) != -1)
{
PCL_INFO ("Input directory given as %s. Batch process mode on.\n", input_dir.c_str ());
if (parse_argument (argc, argv, "-output_dir", output_dir) == -1)
{
PCL_ERROR ("Need an output directory! Please use -output_dir to continue.\n");
return (-1);
}
// Both input dir and output dir given, switch into batch processing mode
batch_mode = true;
}
if (!batch_mode)
{
// Parse the command line arguments for .pcd files
std::vector<int> p_file_indices;
p_file_indices = parse_file_extension_argument (argc, argv, ".pcd");
if (p_file_indices.size () != 2)
{
print_error ("Need one input PCD file and one output PCD file to continue.\n");
return (-1);
}
print_info ("Estimating planes with a threshold of: ");
print_value ("%g\n", thresh);
print_info ("Planar model segmentation: ");
print_value ("%s\n", negative ? "false" : "true");
// Load the first file
pcl::PCLPointCloud2::Ptr cloud (new pcl::PCLPointCloud2);
if (!loadCloud (argv[p_file_indices[0]], *cloud))
return (-1);
// Perform the feature estimation
pcl::PCLPointCloud2 output;
compute (cloud, output, max_it, thresh, negative);
// Save into the second file
saveCloud (argv[p_file_indices[1]], output);
}
else
{
if (!input_dir.empty() && boost::filesystem::exists (input_dir))
{
std::vector<std::string> pcd_files;
boost::filesystem::directory_iterator end_itr;
for (boost::filesystem::directory_iterator itr (input_dir); itr != end_itr; ++itr)
{
// Only add PCD files
if (!is_directory (itr->status ()) && boost::algorithm::to_upper_copy (boost::filesystem::extension (itr->path ())) == ".PCD" )
{
pcd_files.push_back (itr->path ().string ());
PCL_INFO ("[Batch processing mode] Added %s for processing.\n", itr->path ().string ().c_str ());
}
}
batchProcess (pcd_files, output_dir, max_it, thresh, negative);
}
else
{
PCL_ERROR ("Batch processing mode enabled, but invalid input directory (%s) given!\n", input_dir.c_str ());
return (-1);
}
}
}
|