1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2011-2012, Willow Garage, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Author : Christian Potthast
* Email : potthast@usc.edu
*
*/
#include <pcl/io/pcd_io.h>
#include <pcl/console/print.h>
#include <pcl/console/parse.h>
#include <pcl/console/time.h>
#include <pcl/filters/filter.h> // for removeNaNFromPointCloud
#include <pcl/segmentation/unary_classifier.h>
#include <boost/filesystem.hpp> // for path, exists, ...
using namespace pcl;
using namespace pcl::io;
using namespace pcl::console;
double default_feature_threshold = 5.0;
double default_normal_radius_search = 0.01;
double default_fpfh_radius_search = 0.05;
using PointT = PointXYZRGBA;
using CloudT = PointCloud<PointT>;
using CloudLT = PointCloud<PointXYZRGBL>;
using FeatureT = PointCloud<FPFHSignature33>;
void
printHelp (int, char **argv)
{
print_error ("Syntax is: %s input.pcd output.pcd <options>\n", argv[0]);
print_info (" where options are:\n");
print_info (" -d = trained features directory \n");
print_info (" -threshold X = feature threshold (default: ");
print_value ("%f", default_feature_threshold); print_info (")\n");
print_info (" -normal-search X = Normal radius search (default: ");
print_value ("%f", default_normal_radius_search); print_info (")\n");
print_info (" -fpfh-search X = FPFH radius search (default: ");
print_value ("%f", default_fpfh_radius_search); print_info (")\n");
}
bool
loadTrainedFeatures (std::vector<FeatureT::Ptr> &out,
const boost::filesystem::path &base_dir)
{
if (!boost::filesystem::exists (base_dir) && !boost::filesystem::is_directory (base_dir))
return false;
for (boost::filesystem::directory_iterator it (base_dir); it != boost::filesystem::directory_iterator (); ++it)
{
if (!boost::filesystem::is_directory (it->status ()) &&
boost::filesystem::extension (it->path ()) == ".pcd")
{
const std::string path = it->path ().string ();
print_highlight ("Loading %s \n", path.c_str ());
FeatureT::Ptr features (new FeatureT);
if (loadPCDFile (path, *features) < 0)
return false;
out.push_back (features);
}
}
return true;
}
bool
loadCloud (const std::string &filename, CloudT::Ptr &cloud)
{
TicToc tt;
print_highlight ("Loading "); print_value ("%s ", filename.c_str ());
tt.tic ();
if (loadPCDFile (filename, *cloud) < 0)
return (false);
print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", cloud->width * cloud->height); print_info (" points]\n");
return (true);
}
void
compute (const CloudT::Ptr &input, std::vector<FeatureT::Ptr> &trained_features,
CloudLT::Ptr &out,
float normal_radius_search,
float fpfh_radius_search,
float feature_threshold)
{
TicToc tt;
tt.tic ();
print_highlight ("Computing ");
UnaryClassifier<PointT> classifier;
classifier.setInputCloud (input);
classifier.setTrainedFeatures (trained_features);
classifier.setNormalRadiusSearch (normal_radius_search);
classifier.setFPFHRadiusSearch (fpfh_radius_search);
classifier.setFeatureThreshold (feature_threshold);
classifier.segment (out);
print_info ("[done, ");
print_value ("%g", tt.toc ());
print_info (" ms : "); print_value ("%d", out->width * out->height);
print_info (" points]\n");
}
void
saveCloud (const std::string &filename, CloudLT::Ptr &output)
{
TicToc tt;
tt.tic ();
print_highlight ("Saving "); print_value ("%s ", filename.c_str ());
PCDWriter w;
w.write (filename, *output);
print_info ("[done, ");
print_value ("%g", tt.toc ()); print_info (" ms : ");
print_value ("%d", output->width * output->height); print_info (" points]\n");
}
/* ---[ */
int
main (int argc, char** argv)
{
print_info ("Train unary classifier using FPFH. For more information, use: %s -h\n", argv[0]);
if (argc < 4)
{
printHelp (argc, argv);
return (-1);
}
// Parse the command line arguments for .pcd files
std::vector<int> p_file_indices;
p_file_indices = parse_file_extension_argument (argc, argv, ".pcd");
if (p_file_indices.size () != 2)
{
print_error ("Need one input PCD file and one output PCD file to continue.\n");
return (-1);
}
// Load the input file
CloudT::Ptr cloud (new CloudT);
if (!loadCloud (argv[p_file_indices[0]], cloud))
return (-1);
// TODO:: make this as an optional argument ??
pcl::Indices tmp_indices;
pcl::removeNaNFromPointCloud (*cloud, *cloud, tmp_indices);
// parse optional input arguments from the command line
float normal_radius_search = static_cast<float> (default_normal_radius_search);
float fpfh_radius_search = static_cast<float> (default_fpfh_radius_search);
float feature_threshold = static_cast<float> (default_feature_threshold);
std::string dir_name;
parse_argument (argc, argv, "-d", dir_name);
parse_argument (argc, argv, "-threshold", feature_threshold);
parse_argument (argc, argv, "-normal-radius-search", normal_radius_search);
parse_argument (argc, argv, "-fpfh-radius-search", fpfh_radius_search);
print_info ("trained feature directory: %s \n", dir_name.c_str ());
// load the trained features
std::vector<FeatureT::Ptr> trained_features;
if (!loadTrainedFeatures (trained_features, dir_name.c_str ()))
return (-1);
print_info ("feature_threshold: %f \n", feature_threshold);
print_info ("normal-radius-search: %f \n", normal_radius_search);
print_info ("fpfh-radius-search: %f \n\n", fpfh_radius_search);
CloudLT::Ptr out (new CloudLT);
compute (cloud, trained_features, out, normal_radius_search, fpfh_radius_search, feature_threshold);
saveCloud (argv[p_file_indices[1]], out);
}
|