File: index.rst

package info (click to toggle)
pcl 1.15.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 143,128 kB
  • sloc: cpp: 520,234; xml: 28,792; ansic: 8,212; python: 334; lisp: 93; sh: 49; makefile: 30
file content (1463 lines) | stat: -rw-r--r-- 40,495 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
.. toctree::


Introduction
------------

The following links describe a set of basic PCL tutorials. Please note that
their source codes may already be provided as part of the PCL regular releases,
so check there before you start copy & pasting the code. The list of tutorials
below is automatically generated from reST files located in our git repository.

.. note::

  Before you start reading, please make sure that you go through the higher-level overview documentation at http://www.pointclouds.org/documentation/, under **Getting Started**. Thank you.

As always, we would be happy to hear your comments and receive your
contributions on any tutorial.

.. _basic_usage:

Basic Usage
-----------

  * :ref:`walkthrough`

     ======  ======
     |mi_0|  Title: **PCL Functionality Walkthrough**

             Author: *Razvan G. Mihalyi*

             Compatibility: > PCL 1.6

             Takes the reader through all of the PCL modules and offers basic explanations on their functionalities.
     ======  ======

     .. |mi_0| image:: images/pcl_logo.png
               :height: 75px


  * :ref:`basic_structures`

     ======  ======
     |mi_1|  Title: **Getting Started / Basic Structures**

             Author: *Radu B. Rusu*

             Compatibility: > PCL 1.0

             Presents the basic data structures in PCL and discusses their usage with a simple code example.
     ======  ======

     .. |mi_1| image:: images/pcl_logo.png
               :height: 75px

  * :ref:`using_pcl_pcl_config`

     ======  ======
     |mi_2|  Title: **Using PCL in your own project**

             Author: *Nizar Sallem*

             Compatibility: > PCL 1.0

             In this tutorial, we will learn how to link your own project to PCL using cmake.
     ======  ======

     .. |mi_2| image:: images/pcl_logo.png
               :height: 75px

  * :ref:`compiling_pcl_posix`

     =======  ======
     |mi_12|  Title: **Compiling PCL from source on POSIX compliant systems**

              Author: *Victor Lamoine*

              Compatibility: > PCL 1.0

              In this tutorial, we will explain how to compile PCL from sources on POSIX/Unix systems.
     =======  ======

     .. |mi_12| image:: images/pcl_logo.png
               :height: 120px

  * :ref:`building_pcl`

     ======  ======
     |mi_3|  Title: **Explaining PCL's cmake options**

             Author: *Nizar Sallem*

             Compatibility: > PCL 1.0

             In this tutorial, we will explain the basic PCL cmake options, and ways to tweak them to fit your project.
     ======  ======

     .. |mi_3| image:: images/pcl_ccmake.png
               :height: 100px

  * :ref:`pcl_vcpkg_windows`

     ======  ======
     |mi_4|  Title: **Install PCL using VCPKG**

             Author: *Lars Glud*

             Compatibility: PCL version available on VCPKG and Master, unless VCPKG updates a dependency before PCL is ready for it.

             In this tutorial,it is explained how to install PCL or PCL dependencies.
     ======  ======

     .. |mi_4| image:: images/windows_logo.png
               :height: 100px

  * :ref:`compiling_pcl_dependencies_windows`

     ======  ======
     |mi_4|  Title: **Compiling PCL's dependencies from source on Windows**

             Authors: *Alessio Placitelli* and *Mourad Boufarguine*

             Compatibility: > PCL 1.0

             In this tutorial, we will explain how to compile PCL's 3rd party dependencies from source on Microsoft Windows.
     ======  ======

     .. |mi_4| image:: images/windows_logo.png
               :height: 100px

  * :ref:`compiling_pcl_windows`

     ======  ======
     |mi_5|  Title: **Compiling PCL on Windows**

             Author: *Mourad Boufarguine*

             Compatibility: > PCL 1.0 

             In this tutorial, we will explain how to compile PCL on Microsoft Windows.
     ======  ======

     .. |mi_5| image:: images/windows_logo.png
               :height: 100px

  * :ref:`compiling_pcl_macosx`

     ======  ======
     |mi_6|  Title: **Compiling PCL and its dependencies from MacPorts and source on Mac OS X**

             Author: *Justin Rosen*

             Compatibility: > PCL 1.0

             This tutorial explains how to build the Point Cloud Library **from MacPorts and source** on Mac OS X platforms.
     ======  ======

     .. |mi_6| image:: images/macosx_logo.png
               :height: 100px

  * :ref:`compiling_pcl_docker`

     =======  ======
     |mi_13|  Title: **Compiling PCL using docker**

              Author: *Theodoros Nikolaou*

              Compatibility: > PCL 1.12

              This tutorial explains how to build and install PCL from source using docker
     =======  ======

     .. |mi_13| image:: images/pcl_logo.png
               :height: 100px

  * :ref:`installing_homebrew`

     ======  ======
     |mi_7|  Title: **Installing on Mac OS X using Homebrew**

             Author: *Geoffrey Biggs*

             Compatibility: > PCL 1.2

             This tutorial explains how to install the Point Cloud Library on Mac OS X using Homebrew. Both direct installation and compiling PCL from source are explained.
     ======  ======

     .. |mi_7| image:: images/macosx_logo.png
               :height: 100px

  * :ref:`using_pcl_with_eclipse`

     ======  ======
     |mi_8|  Title: **Using Eclipse as your PCL editor**

             Author: *Koen Buys*

             Compatibility: PCL git master

             This tutorial shows you how to get your PCL as a project in Eclipse.
     ======  ======

     .. |mi_8| image:: images/pcl_with_eclipse/eclipse.png
               :height: 100px

  * :ref:`generate_local_doc`

     =======  ======
     |mi_11|  Title: **Generate a local documentation for PCL**

              Author: *Victor Lamoine*

              Compatibility: PCL > 1.0

              This tutorial shows you how to generate and use a local documentation for PCL.
     =======  ======

     .. |mi_11| image:: images/pcl_logo.png
               :height: 75px

  * :ref:`matrix_transform`

     =======  ======
     |mi_10|  Title: **Using matrixes to transform a point cloud**

              Author: *Victor Lamoine*

              Compatibility: > PCL 1.5

              This tutorial shows you how to transform a point cloud using a matrix.
     =======  ======

     .. |mi_10| image:: images/matrix_transform/cube.png
               :height: 120px

.. _advanced_usage:

Advanced Usage
--------------

  * :ref:`adding_custom_ptype`

     ======  ======
     |au_1|  Title: **Adding your own custom PointT point type**

             Author: *Radu B. Rusu*

             Compatibility: > PCL 0.9, < PCL 2.0

             This document explains what templated point types are in PCL, why do they exist, and how to create and use your own `PointT` point type.
     ======  ======

     .. |au_1| image:: images/pcl_logo.png
               :height: 75px

  * :ref:`writing_new_classes`

     ======  ======
     |au_2|  Title: **Writing a new PCL class**

             Author: *Radu B. Rusu, Luca Penasa*

             Compatibility: > PCL 0.9, < PCL 2.0

             This short guide is to serve as both a HowTo and a FAQ for writing new PCL classes, either from scratch, or by adapting old code.
     ======  ======

     .. |au_2| image:: images/pcl_logo.png
               :height: 75px

.. _features_tutorial:

Features
--------

  * :ref:`how_3d_features_work`

     ======  ======
     |fe_1|  Title: **How 3D features work**

             Author: *Radu B. Rusu*

             Compatibility: > PCL 1.0

             This document presents a basic introduction to the 3D feature estimation methodologies in PCL.
     ======  ======
     
     .. |fe_1| image:: images/good_features_small.jpg
               :height: 100px

  * :ref:`normal_estimation`
    
     ======  ======
     |fe_2|  Title: **Estimating Surface Normals in a PointCloud**

             Author: *Radu B. Rusu*

             Compatibility: > PCL 1.0

             This tutorial discusses the theoretical and implementation details of the surface normal estimation module in PCL.
     ======  ======
     
     .. |fe_2| image:: images/normal_estimation.png
               :height: 100px


  * :ref:`normal_estimation_using_integral_images`
    
     ======  ======
     |fe_3|  Title: **Normal Estimation Using Integral Images**

             Author: *Stefan Holzer*

             Compatibility: > PCL 1.0

             In this tutorial we will learn how to compute normals for an organized point cloud using integral images.
     ======  ======
     
     .. |fe_3| image:: images/normal_estimation_ii.png
               :height: 100px

  * :ref:`pfh_estimation`
    
     ======  ======
     |fe_4|  Title: **Point Feature Histograms (PFH) descriptors**

             Author: *Radu B. Rusu*

             Compatibility: > PCL 1.0

             This tutorial introduces a family of 3D feature descriptors called PFH (Point Feature Histograms) and discusses their implementation details from PCL's perspective.
     ======  ======
     
     .. |fe_4| image:: images/pfh_estimation.png
               :height: 100px

  * :ref:`fpfh_estimation`
    
     ======  ======
     |fe_5|  Title: **Fast Point Feature Histograms (FPFH) descriptors**

             Author: *Radu B. Rusu*

             Compatibility: > PCL 1.3

             This tutorial introduces the FPFH (Fast Point Feature Histograms) 3D descriptor and discusses their implementation details from PCL's perspective.
     ======  ======
     
     .. |fe_5| image:: images/fpfh_estimation.jpg
               :height: 100px

  * :ref:`vfh_estimation`
    
     ======  ======
     |fe_6|  Title: **Estimating VFH signatures for a set of points**

             Author: *Radu B. Rusu*

             Compatibility: > PCL 0.8

             This document describes the Viewpoint Feature Histogram (VFH) descriptor, a novel representation for point clusters for the problem of Cluster (e.g., Object) Recognition and 6DOF Pose Estimation.
     ======  ======
     
     .. |fe_6| image:: images/vfh_estimation.png
               :height: 100px
  
  * :ref:`narf_feature_extraction`
    
     ======  ======
     |fe_7|  Title: **How to extract NARF features from a range image**

             Author: *Bastian Steder*

             Compatibility: > 1.3

             In this tutorial, we will learn how to extract NARF features from a range image.
     ======  ======
     
     .. |fe_7| image:: images/narf_keypoint_extraction.png
               :height: 100px

  * :ref:`moment_of_inertia`

     ======  ======
     |fe_8|  Title: **Moment of inertia and eccentricity based descriptors**

             Author: *Sergey Ushakov*

             Compatibility: > PCL 1.7

             In this tutorial we will learn how to compute moment of inertia and eccentricity of the cloud. In addition to this we will learn how to extract AABB and OBB.
     ======  ======

     .. |fe_8| image:: images/moment_of_inertia.png
               :height: 100px

  * :ref:`rops_feature`

     ======  ======
     |fe_9|  Title: **RoPs (Rotational Projection Statistics) feature**

             Author: *Sergey Ushakov*

             Compatibility: > PCL 1.7

             In this tutorial we will learn how to compute RoPS feature.
     ======  ======

     .. |fe_9| image:: images/rops_feature.png
               :height: 100px

  * :ref:`gasd_estimation`

     =======  ======
     |fe_10|  Title: **Globally Aligned Spatial Distribution (GASD) descriptors**

              Author: *Joao Paulo Lima*

              Compatibility: >= PCL 1.9

              This document describes the Globally Aligned Spatial Distribution (GASD) global descriptor to be used for efficient object recognition and pose estimation.
     =======  ======

     .. |fe_10| image:: images/gasd_estimation.png
               :height: 100px

.. _filtering_tutorial:

Filtering
---------

  * :ref:`passthrough`
    
     ======  ======
     |fi_1|  Title: **Filtering a PointCloud using a PassThrough filter**

             Author: *Radu B. Rusu*

             Compatibility: > PCL 1.0

             In this tutorial, we will learn how to remove points whose values fall inside/outside a user given interval along a specified dimension.
     ======  ======
     
     .. |fi_1| image:: images/passthrough.png
               :height: 100px

  * :ref:`voxelgrid`
    
     ======  ======
     |fi_2|  Title: **Downsampling a PointCloud using a VoxelGrid filter**

             Author: *Radu B. Rusu*

             Compatibility: > PCL 1.0

             In this tutorial, we will learn how to downsample (i.e., reduce the number of points) a Point Cloud.
     ======  ======
     
     .. |fi_2| image:: images/voxel_grid.jpg
               :height: 100px
    

  * :ref:`statistical_outlier_removal` 
    
     ======  ======
     |fi_3|  Title: **Removing sparse outliers using StatisticalOutlierRemoval**

             Author: *Radu B. Rusu*

             Compatibility: > PCL 1.0

             In this tutorial, we will learn how to remove sparse outliers from noisy data, using StatisticalRemoval.
     ======  ======
     
     .. |fi_3| image:: images/statistical_removal.jpg
               :height: 100px

  * :ref:`project_inliers`

     ======  ======
     |fi_4|  Title: **Projecting points using a parametric model**

             Author: *Radu B. Rusu*

             Compatibility: > PCL 1.0

             In this tutorial, we will learn how to project points to a parametric model (i.e., plane).
     ======  ======
     
     .. |fi_4| image:: images/project_inliers.png
               :height: 100px

  * :ref:`extract_indices`

     ======  ======
     |fi_5|  Title: **Extracting indices from a PointCloud**

             Author: *Radu B. Rusu*

             Compatibility: > PCL 1.0

             In this tutorial, we will learn how to extract a set of indices given by a segmentation algorithm.
     ======  ======
     
     .. |fi_5| image:: images/extract_indices.jpg
               :height: 100px

  * :ref:`remove_outliers` 
    
     ======  ======
     |fi_6|  Title: **Removing outliers using a Conditional or RadiusOutlier removal**

             Author: *Gabe O'Leary*

             Compatibility: > PCL 1.0

             In this tutorial, we will learn how to remove outliers from noisy data, using ConditionalRemoval, RadiusOutlierRemoval.
     ======  ======
     
     .. |fi_6| image:: images/radius_outlier.png
               :height: 100px

.. _i_o:

I/O
---

  * :ref:`pcd_file_format`

     ======  ======
     |i_o0|  Title: **The PCD (Point Cloud Data) file format**

             Author: *Radu B. Rusu*

             Compatibility: > PCL 0.9

             This document describes the PCD file format, and the way it is used inside PCL.
     ======  ======
     
     .. |i_o0| image:: images/PCD_icon.png
               :height: 100px

  * :ref:`reading_pcd`

     ======  ======
     |i_o1|  Title: **Reading Point Cloud data from PCD files**

             Author: *Radu B. Rusu*

             Compatibility: > PCL 1.0

             In this tutorial, we will learn how to read a Point Cloud from a PCD file.
     ======  ======
     
     .. |i_o1| image:: images/read_pcd.jpg
               :height: 100px

  * :ref:`writing_pcd`

     ======  ======
     |i_o2|  Title: **Writing Point Cloud data to PCD files**

             Author: *Radu B. Rusu*

             Compatibility: > PCL 1.0

             In this tutorial, we will learn how to write a Point Cloud to a PCD file.
     ======  ======
     
     .. |i_o2| image:: images/write_pcd.jpg
               :height: 100px

  * :ref:`concatenate_clouds`

     ======  ======
     |i_o3|  Title: **Concatenate the fields or points of two Point Clouds**

             Author: *Gabe O'Leary / Radu B. Rusu*

             Compatibility: > PCL 1.0

             In this tutorial, we will learn how to concatenate both the fields and the point data of two Point Clouds.  When concatenating fields, one PointClouds contains only *XYZ* data, and the other contains *Surface Normal* information.
     ======  ======

     .. |i_o3| image:: images/concatenate_fields.jpg
               :height: 100px

  * :ref:`openni_grabber`

     ======  ======
     |i_o4|  Title: **Grabbing Point Clouds from an OpenNI camera**

             Author: *Nico Blodow*

             Compatibility: > PCL 1.0

             In this tutorial, we will learn how to acquire point cloud data from an OpenNI camera.
     ======  ======

     .. |i_o4| image:: images/openni_grabber.png
               :height: 100px

  * :ref:`hdl_grabber`

     ======  ======
     |i_o5|  Title: **Grabbing Point Clouds from a Velodyne High Definition LiDAR (HDL)**

             Author: *Keven Ring*

             Compatibility: >= PCL 1.7

             In this tutorial, we will learn how to acquire point cloud data from a Velodyne HDL.
     ======  ======

     .. |i_o5| image:: images/hdl_grabber.png
               :height: 100px
               
  * :ref:`dinast_grabber`

     ======  ======
     |i_o6|  Title: **Grabbing Point Clouds from Dinast Cameras**

             Author: *Marco A. Gutierrez*

             Compatibility: >= PCL 1.7

             In this tutorial, we will learn how to acquire point cloud data from a Dinast camera.
     ======  ======

     .. |i_o6| image:: images/dinast_cyclopes.png
               :height: 100px

  * :ref:`ensenso_cameras`

     ======  ======
     |i_o7|  Title: **Grabbing point clouds from Ensenso cameras**

             Author: *Victor Lamoine*

             Compatibility: >= PCL 1.8.0

             In this tutorial, we will learn how to acquire point cloud data from an IDS-Imaging Ensenso camera.
     ======  ======

     .. |i_o7| image:: images/ensenso/ids.png
               :height: 165px

  * :ref:`david_sdk`

     ======  ======
     |i_o8|  Title: **Grabbing point clouds / meshes from davidSDK scanners**

             Author: *Victor Lamoine*

             Compatibility: >= PCL 1.8.0

             In this tutorial, we will learn how to acquire point cloud or mesh data from a davidSDK scanner.
     ======  ======

     .. |i_o8| image:: images/davidsdk/david.png
               :height: 70px

  * :ref:`depth_sense_grabber`

     ======  ======
     |i_o9|  Title: **Grabbing point clouds from DepthSense cameras**

             Author: *Sergey Alexandrov*

             Compatibility: >= PCL 1.8.0

             In this tutorial we will learn how to setup and use DepthSense cameras within PCL on both Linux and Windows platforms.
     ======  ======

     .. |i_o9| image:: images/creative_camera.jpg
               :height: 70px

.. _keypoints_tutorial:

Keypoints
---------

  * :ref:`narf_keypoint_extraction`
    
     ======  ======
     |kp_1|  Title: **How to extract NARF keypoints from a range image**

             Author: *Bastian Steder*

             Compatibility: > 1.3

             In this tutorial, we will learn how to extract NARF keypoints from a range image.
     ======  ======
     
     .. |kp_1| image:: images/narf_keypoint_extraction.png
               :height: 100px

.. _kdtree_tutorial:

KdTree
------

  * :ref:`kdtree_search`

     ======  ======
     |kd_1|  Title: **KdTree Search**

             Author: *Gabe O'Leary*

             Compatibility: > PCL 1.0

             In this tutorial, we will learn how to search using the nearest neighbor method for k-d trees
     ======  ======
     
     .. |kd_1| image:: images/kdtree_search.png
               :height: 100px

.. _octree_tutorial:

Octree
------

  * :ref:`octree_compression`
  
     ======  ======
     |oc_1|  Title: **Point cloud compression**

             Author: *Julius Kammerl*

             Compatibility: > PCL 1.0

             In this tutorial, we will learn how to compress a single point cloud and streams of point clouds.
     ======  ======
     
     .. |oc_1| image:: images/compression_tutorial.png
               :height: 100px

  * :ref:`octree_search`
  
     ======  ======
     |oc_2|  Title: **Octrees for spatial partitioning and neighbor search**

             Author: *Julius Kammerl*

             Compatibility: > PCL 1.0

             In this tutorial, we will learn how to use octrees for spatial partitioning and nearest neighbor search.
     ======  ======
     
     .. |oc_2| image:: images/octree_img.png
               :height: 100px
               
  * :ref:`octree_change_detection`
  
     ======  ======
     |oc_3|  Title: **Spatial change detection on unorganized point cloud data**

             Author: *Julius Kammerl*

             Compatibility: > PCL 1.0

             In this tutorial, we will learn how to use octrees for detecting spatial changes within point clouds.
     ======  ======
     
     .. |oc_3| image:: images/changedetectionThumb.png
               :height: 100px

.. _range_images:

Range Images
------------

  * :ref:`range_image_creation`

     ======  ======
     |ri_1|  Title: **Creating Range Images from Point Clouds**

             Author: *Bastian Steder*

             Compatibility: > PCL 1.0
             
             This tutorial demonstrates how to create a range image from a point cloud and a given sensor position. 
     ======  ======

     .. |ri_1| image:: images/range_image_visualization.png
               :height: 100px

  * :ref:`range_image_border_extraction`

     ======  ======
     |ri_2|  Title: **Extracting borders from Range Images**

             Author: *Bastian Steder*

             Compatibility: > PCL 1.3
             
             This tutorial demonstrates how to extract borders (traversals from foreground to background) from a range image. 
     ======  ======

     .. |ri_2| image:: images/range_image_border_points.png
               :height: 100px

.. _recognition_tutorial:

Recognition
-----------

  * :ref:`correspondence_grouping`

     ======  ======
     |rc_1|  Title: **The PCL Recognition API**

             Author: *Tommaso Cavallari, Federico Tombari*

             Compatibility: > PCL 1.6

             This tutorial aims at explaining how to perform 3D Object Recognition based on the pcl_recognition module.
     ======  ======

     .. |rc_1| image:: images/correspondence_grouping/correspondence_grouping.jpg
               :height: 100px

  * :ref:`implicit_shape_model`

     ======  ======
     |rc_2|  Title: **Implicit Shape Model**

             Author: *Sergey Ushakov*

             Compatibility: > PCL 1.7

             In this tutorial we will learn how the Implicit Shape Model algorithm works and how to use it for finding objects centers.
     ======  ======

     .. |rc_2| image:: images/implicit_shape_model.png
               :height: 100px

  * :ref:`global_hypothesis_verification`

     ======  ======
     |rc_3|  Title: **Hypothesis Verification for 3D Object Recognition**

             Author: *Daniele De Gregorio, Federico Tombari*

             Compatibility: > PCL 1.7

             This tutorial aims at explaining how to do 3D object recognition in clutter by verifying model hypotheses in cluttered and  heavily occluded 3D scenes.
     ======  ======

     .. |rc_3| image:: images/global_hypothesis_verification/multiple.png
               :height: 100px

.. _registration_tutorial:

Registration
------------

  * :ref:`registration_api`

     ======  ======
     |re_1|  Title: **The PCL Registration API**

             Author: *Dirk Holz, Radu B. Rusu, Jochen Sprickerhof*

             Compatibility: > PCL 1.5

             In this document, we describe the point cloud registration API and its modules: the estimation and rejection of point correspondences, and the estimation of rigid transformations.
     ======  ======

     .. |re_1| image:: images/registration/registration_api.png
               :height: 100px

  * :ref:`iterative_closest_point`

     ======  ======
     |re_2|  Title: **How to use iterative closest point algorithm**

             Author: *Gabe O'Leary*

             Compatibility: > PCL 1.0

             This tutorial gives an example of how to use the iterative closest point algorithm to see if one PointCloud is just a rigid transformation of another PointCloud.
     ======  ======

     .. |re_2| image:: images/iterative_closest_point.gif
               :height: 100px

  * :ref:`pairwise_incremental_registration`

     ======  ======
     |re_3|  Title: **How to incrementally register pairs of clouds**

             Author: *Raphael Favier*

             Compatibility: > PCL 1.4

             This document demonstrates using the Iterative Closest Point algorithm in order to incrementally register a series of point clouds two by two.
     ======  ======

     .. |re_3| image:: images/iterative_closest_point.gif
               :height: 100px

  * :ref:`interactive_icp`

     ======  ======
     |re_7|  Title: **Interactive ICP**

             Author: *Victor Lamoine*

             Compatibility: > PCL 1.5

             This tutorial will teach you how to build an interactive ICP program
     ======  ======

     .. |re_7| image:: images/interactive_icp/monkey.png
               :height: 120px

  * :ref:`normal_distributions_transform`

     ======  ======
     |re_4|  Title: **How to use the Normal Distributions Transform algorithm**

             Author: *Brian Okorn*

             Compatibility: > PCL 1.6

             This document demonstrates using the Normal Distributions Transform algorithm to register two large point clouds.
     ======  ======

     .. |re_4| image:: images/normal_distributions_transform.gif
               :height: 100px

  * :ref:`in_hand_scanner`

     ======  ======
     |re_5|  Title: **How to use the In-hand scanner for small objects**

             Author: *Martin Saelzle*

             Compatibility: >= PCL 1.7

             This document shows how to use the In-hand scanner applications to obtain colored models of small objects with RGB-D cameras.
     ======  ======

     .. |re_5| image:: images/ihs_lion_model.png
               :height: 100px

  * :ref:`alignment_prerejective`

     ======  ======
     |re_6|  Title: **Robust pose estimation of rigid objects**

             Author: *Anders Glent Buch*

             Compatibility: >= PCL 1.7

             In this tutorial, we show how to find the alignment pose of a rigid object in a scene with clutter and occlusions.

     ======  ======

     .. |re_6| image:: images/alignment_prerejective_1.png
               :height: 100px


.. _sample_consensus:

Sample Consensus
----------------

  * :ref:`random_sample_consensus`
    
     ======  ======
     |sc_1|  Title: **How to use Random Sample Consensus model**

             Author: *Gabe O'Leary*

             Compatibility: > PCL 1.0

             In this tutorial we learn how to use a RandomSampleConsensus with a plane model to obtain the cloud fitting to this model.
     ======  ======
     
     .. |sc_1| image:: images/ransac_outliers_plane.png
               :height: 100px

.. _segmentation_tutorial:
  
Segmentation
------------

  * :ref:`planar_segmentation`
    
     ======  ======
     |se_1|  Title: **Plane model segmentation**

             Author: *Radu B. Rusu*

             Compatibility: > PCL 1.3

             In this tutorial, we will learn how to segment arbitrary plane models from a given point cloud dataset.
     ======  ======
     
     .. |se_1| image:: images/planar_segmentation.jpg
               :height: 100px

  * :ref:`cylinder_segmentation`

     ======  ======
     |se_2|  Title: **Cylinder model segmentation**

             Author: *Radu B. Rusu*

             Compatibility: > PCL 1.3

             In this tutorial, we will learn how to segment arbitrary cylindrical models from a given point cloud dataset.
     ======  ======
     
     .. |se_2| image:: images/cylinder_segmentation.jpg
               :height: 100px

  * :ref:`cluster_extraction`

     ======  ======
     |se_3|  Title: **Euclidean Cluster Extraction**

             Author: *Serkan Tuerker*

             Compatibility: > PCL 1.3

             In this tutorial we will learn how to extract Euclidean clusters with the ``pcl::EuclideanClusterExtraction`` class.
     ======  ======
     
     .. |se_3| image:: images/cluster_extraction.jpg
               :height: 100px

  * :ref:`region_growing_segmentation`

     ======  ======
     |se_4|  Title: **Region Growing Segmentation**

             Author: *Sergey Ushakov*

             Compatibility: >= PCL 1.7

             In this tutorial we will learn how to use region growing segmentation algorithm.
     ======  ======

     .. |se_4| image:: images/region_growing_segmentation.jpg
               :height: 100px

  * :ref:`region_growing_rgb_segmentation`

     ======  ======
     |se_5|  Title: **Color-based Region Growing Segmentation**

             Author: *Sergey Ushakov*

             Compatibility: >= PCL 1.7

             In this tutorial we will learn how to use color-based region growing segmentation algorithm.
     ======  ======

     .. |se_5| image:: images/region_growing_rgb_segmentation.jpg
               :height: 100px

  * :ref:`min_cut_segmentation`

     ======  ======
     |se_6|  Title: **Min-Cut Based Segmentation**

             Author: *Sergey Ushakov*

             Compatibility: >= PCL 1.7

             In this tutorial we will learn how to use min-cut based segmentation algorithm.
     ======  ======

     .. |se_6| image:: images/min_cut_segmentation.jpg
               :height: 100px

  * :ref:`conditional_euclidean_clustering`

     ======  ======
     |se_7|  Title: **Conditional Euclidean Clustering**

             Author: *Frits Florentinus*

             Compatibility: >= PCL 1.7

             This tutorial describes how to use the Conditional Euclidean Clustering class in PCL:
             A segmentation algorithm that clusters points based on Euclidean distance and a user-customizable condition that needs to hold.
     ======  ======

     .. |se_7| image:: images/conditional_euclidean_clustering.jpg
               :height: 100px

  * :ref:`don_segmentation`

     ======  ======
     |se_8|  Title: **Difference of Normals Based Segmentation**

             Author: *Yani Ioannou*

             Compatibility: >= PCL 1.7

             In this tutorial we will learn how to use the difference of normals feature for segmentation.
     ======  ======

     .. |se_8| image:: images/don_segmentation.png
               :height: 100px

  * :ref:`supervoxel_clustering`

     ======  ======
     |se_9|  Title: **Supervoxel Clustering**

             Author: *Jeremie Papon*

             Compatibility: >= PCL 1.8

             In this tutorial, we show to break a pointcloud into the mid-level supervoxel representation.
     ======  ======

     .. |se_9| image:: images/supervoxel_clustering_small.png
               :height: 100px

  * :ref:`progressive_morphological_filtering`

     =======  ======
     |se_10|  Title: **Progressive Morphological Filtering**

              Author: *Brad Chambers*

              Compatibility: >= PCL 1.8

              In this tutorial, we show how to segment a point cloud into ground and non-ground returns.
     =======  ======

     .. |se_10| image:: images/progressive_morphological_filter.png
               :height: 100px

  * :ref:`model_outlier_removal`

     =======  ======
     |se_11|  Title: **Model outlier removal**

              Author: *Timo Häckel*

              Compatibility: >= PCL 1.7.2

              This tutorial describes how to extract points from a point cloud using SAC models
     =======  ======

     .. |se_11| image:: images/pcl_logo.png
               :height: 75px
               
.. _surface_tutorial:

Surface
-------

  * :ref:`moving_least_squares`

     ======  ======
     |su_1|  Title: **Smoothing and normal estimation based on polynomial reconstruction**

             Author: *Zoltan-Csaba Marton, Alexandru E. Ichim*

             Compatibility: > PCL 1.6

             In this tutorial, we will learn how to construct and run a Moving Least Squares (MLS) algorithm to obtain smoothed XYZ coordinates and normals.
     ======  ======
     
     .. |su_1| image:: images/resampling.jpg
               :height: 100px

  * :ref:`hull_2d`

     ======  ======
     |su_2|  Title: **Construct a concave or convex hull polygon for a plane model**

             Author: *Gabe O'Leary, Radu B. Rusu*

             Compatibility: > PCL 1.0

             In this tutorial we will learn how to calculate a simple 2D concave or convex hull polygon for a set of points supported by a plane.
     ======  ======
     
     .. |su_2| image:: images/convex_hull_2d.jpg
               :height: 100px

  * :ref:`greedy_triangulation`

     ======  ======
     |su_3|  Title: **Fast triangulation of unordered point clouds**

             Author: *Zoltan-Csaba Marton*

             Compatibility: > PCL 1.0

             In this tutorial we will learn how to run a greedy triangulation algorithm on a PointCloud with normals to obtain a triangle mesh based on projections of the local neighborhood.
     ======  ======
     
     .. |su_3| image:: images/greedy_triangulation.png
               :height: 100px

  * :ref:`bspline_fitting`

     ======  ======
     |su_4|  Title: **Fitting trimmed B-splines to unordered point clouds**

             Author: *Thomas Mörwald*

             Compatibility: > PCL 1.7

             In this tutorial we will learn how to reconstruct a smooth surface from an unordered point-cloud by fitting trimmed B-splines.
     ======  ======
     
     .. |su_4| image:: images/bspline_bunny.png
               :height: 100px


.. _visualization_tutorial:

Visualization
-------------

  * :ref:`cloud_viewer`

     ======  ======
     |vi_1|  Title: **Visualizing Point Clouds**

             Author: *Ethan Rublee*

             Compatibility: > PCL 1.0

             This tutorial demonstrates how to use the pcl visualization tools.
     ======  ======

     .. |vi_1| image:: images/cloud_viewer.jpg
               :height: 100px

  * :ref:`range_image_visualization`

     ======  ======
     |vi_2|  Title: **Visualizing Range Images**

             Author: *Bastian Steder*

             Compatibility: > PCL 1.3

             This tutorial demonstrates how to use the pcl visualization tools for range images.
     ======  ======

     .. |vi_2| image:: images/range_image_visualization.png
               :height: 100px

  * :ref:`pcl_visualizer`

     ======  ======
     |vi_3|  Title: **PCLVisualizer**

             Author: *Geoffrey Biggs*

             Compatibility: > PCL 1.3

             This tutorial demonstrates how to use the PCLVisualizer class for powerful visualisation of point clouds and related data.
     ======  ======

     .. |vi_3| image:: images/pcl_visualizer_viewports.png
               :height: 100px
 
  * :ref:`pcl_plotter`

     ======  ======
     |vi_4|  Title: **PCLPlotter**

             Author: *Kripasindhu Sarkar*

             Compatibility: > PCL 1.7

             This tutorial demonstrates how to use the PCLPlotter class for powerful visualisation of plots, charts and histograms of raw data and explicit functions.
     ======  ======

     .. |vi_4| image:: images/pcl_plotter_comprational.png
               :height: 100px               

  * :ref:`visualization`

     ======  ======
     |vi_5|  Title: **PCL Visualization overview**

             Author: *Radu B. Rusu*

             Compatibility: >= PCL 1.0

             This tutorial will give an overview on the usage of the PCL visualization tools.
     ======  ======

     .. |vi_5| image:: images/visualization_small.png
               :height: 120px

  * :ref:`qt_visualizer`

     ======  ======
     |vi_6|  Title: **Create a PCL visualizer in Qt with cmake**

             Author: *Victor Lamoine*

             Compatibility: > PCL 1.5

             This tutorial shows you how to create a PCL visualizer within a Qt application.
     ======  ======

     .. |vi_6| image:: images/qt_visualizer/qt.png
               :height: 128px

  * :ref:`qt_colorize_cloud`

     ======  ======
     |vi_7|  Title: **Create a PCL visualizer in Qt to colorize clouds**

              Author: *Victor Lamoine*

              Compatibility: > PCL 1.5

              This tutorial shows you how to color point clouds within a Qt application.
     ======  ======

     .. |vi_7| image:: images/qt_visualizer/qt.png
               :height: 128px


.. _applications_tutorial:

Applications
------------

  * :ref:`template_alignment`

     ======  ======
     |ap_1|  Title: **Aligning object templates to a point cloud**

             Author: *Michael Dixon*

             Compatibility: > PCL 1.3

             This tutorial gives an example of how some of the tools covered in the previous tutorials can be combined to solve a higher level problem --- aligning a previously captured model of an object to some newly captured data.
     ======  ======

     .. |ap_1| image:: images/template_alignment_1.jpg
               :height: 100px

  * :ref:`vfh_recognition`
    
     ======  ======
     |ap_2|  Title: **Cluster Recognition and 6DOF Pose Estimation using VFH descriptors**

             Author: *Radu B. Rusu*

             Compatibility: > PCL 0.8

             In this tutorial we show how the Viewpoint Feature Histogram (VFH) descriptor can be used to recognize similar clusters in terms of their geometry.
     ======  ======
     
     .. |ap_2| image:: images/vfh_recognition.jpg
               :height: 100px

  * :ref:`mobile_streaming`
    
     ======  ======
     |ap_3|  Title: **Point Cloud Streaming to Mobile Devices with Real-time Visualization**

             Author: *Pat Marion*

             Compatibility: > PCL 1.3

             This tutorial describes how to send point cloud data over the network from a desktop server to a client running on a mobile device.
     ======  ======
     
     .. |ap_3| image:: images/mobile_streaming_1.jpg
               :height: 100px
               
  * :ref:`ground_based_rgbd_people_detection`
     
     ======  ======
     |ap_5|  Title: **Detecting people on a ground plane with RGB-D data**

             Author: *Matteo Munaro*

             Compatibility: >= PCL 1.7

             This tutorial presents a method for detecting people on a ground plane with RGB-D data.
     ======  ======
     
     .. |ap_5| image:: images/ground_based_rgbd_people_detection/Index_photo.jpg
               :height: 120px

.. _gpu:

GPU
---

  * :ref:`gpu_install`
     
     ======  ======
     |gp_1|  Title: **GPU Installation**

             Author: *Koen Buys*

             Compatibility: PCL git master

             This tutorial explains how to configure PCL to use with a Nvidia GPU
     ======  ======
     
     .. |gp_1| image:: images/PCD_icon.png
               :height: 100px

  * :ref:`using_kinfu_large_scale`

     ======  ======
     |ap_4|  Title: **Using Kinfu Large Scale to generate a textured mesh**

             Author: *Francisco Heredia and Raphael Favier*

             Compatibility: PCL git master

             This tutorial demonstrates how to use KinFu Large Scale to produce a mesh from a room, and apply texture information in post-processing for a more appealing visual result.
     ======  ======

     .. |ap_4| image:: images/using_kinfu_large_scale.jpg
               :height: 100px

  * :ref:`gpu_people`
     
     ======  ======
     |gp_2|  Title: **People Detection**

             Author: *Koen Buys*

             Compatibility: PCL git master

             This tutorial presents a method for people and pose detection.
     ======  ======
     
     .. |gp_2| image:: images/gpu/people/c2_100.jpg
               :height: 100px

 ..
  * :ref:`normal_estimation_integral_images`
    Surface normal estimation
  * Range Image
    * :ref:`range_image_visualization`
      How to visualize a range image
    * :ref:`range_image_creation`
      How to create a range image from a point cloud
    * :ref:`range_image_border_extraction`
      How to extract borders from range images
    * :ref:`narf_keypoint`
      How to extract NARF keypoints from a range image
    * :ref:`narf_descriptor`
      How to extract NARF descriptors from points in a range images
    * :ref:`octree_search`
      Octrees for spatial partitioning and neighbor search.