File: region_growing_segmentation.cpp

package info (click to toggle)
pcl 1.15.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 143,128 kB
  • sloc: cpp: 520,234; xml: 28,792; ansic: 8,212; python: 334; lisp: 93; sh: 49; makefile: 30
file content (70 lines) | stat: -rw-r--r-- 2,356 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
#include <iostream>
#include <vector>
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/search/search.h>
#include <pcl/search/kdtree.h>
#include <pcl/features/normal_3d.h>
#include <pcl/visualization/cloud_viewer.h>
#include <pcl/filters/filter_indices.h> // for pcl::removeNaNFromPointCloud
#include <pcl/segmentation/region_growing.h>

int
main ()
{
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
  if ( pcl::io::loadPCDFile <pcl::PointXYZ> ("region_growing_tutorial.pcd", *cloud) == -1)
  {
    std::cout << "Cloud reading failed." << std::endl;
    return (-1);
  }

  pcl::search::Search<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
  pcl::PointCloud <pcl::Normal>::Ptr normals (new pcl::PointCloud <pcl::Normal>);
  pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> normal_estimator;
  normal_estimator.setSearchMethod (tree);
  normal_estimator.setInputCloud (cloud);
  normal_estimator.setKSearch (50);
  normal_estimator.compute (*normals);

  pcl::IndicesPtr indices (new std::vector <int>);
  pcl::removeNaNFromPointCloud(*cloud, *indices);

  pcl::RegionGrowing<pcl::PointXYZ, pcl::Normal> reg;
  reg.setMinClusterSize (50);
  reg.setMaxClusterSize (1000000);
  reg.setSearchMethod (tree);
  reg.setNumberOfNeighbours (30);
  reg.setInputCloud (cloud);
  reg.setIndices (indices);
  reg.setInputNormals (normals);
  reg.setSmoothnessThreshold (3.0 / 180.0 * M_PI);
  reg.setCurvatureThreshold (1.0);

  std::vector <pcl::PointIndices> clusters;
  reg.extract (clusters);

  std::cout << "Number of clusters is equal to " << clusters.size () << std::endl;
  std::cout << "First cluster has " << clusters[0].indices.size () << " points." << std::endl;
  std::cout << "These are the indices of the points of the initial" <<
    std::endl << "cloud that belong to the first cluster:" << std::endl;
  std::size_t counter = 0;
  while (counter < clusters[0].indices.size ())
  {
    std::cout << clusters[0].indices[counter] << ", ";
    counter++;
    if (counter % 10 == 0)
      std::cout << std::endl;
  }
  std::cout << std::endl;

  pcl::PointCloud <pcl::PointXYZRGB>::Ptr colored_cloud = reg.getColoredCloud ();
  pcl::visualization::CloudViewer viewer ("Cluster viewer");
  viewer.showCloud(colored_cloud);
  while (!viewer.wasStopped ())
  {
  }

  return (0);
}