File: record_tsdfvolume.cpp

package info (click to toggle)
pcl 1.15.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 143,128 kB
  • sloc: cpp: 520,234; xml: 28,792; ansic: 8,212; python: 334; lisp: 93; sh: 49; makefile: 30
file content (532 lines) | stat: -rw-r--r-- 18,156 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
/*
 * Software License Agreement (BSD License)
 *
 *  Copyright (c) 2011, Willow Garage, Inc.
 *  All rights reserved.
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.
 *   * Neither the name of Willow Garage, Inc. nor the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *  POSSIBILITY OF SUCH DAMAGE.
 *
 *  Author: Bernhard Zeisl, (myname.mysurname@inf.ethz.ch)
 */


#include <pcl/point_types.h>
#include <pcl/point_cloud.h>
#include <pcl/io/pcd_io.h>
#include <pcl/common/file_io.h>
#include <pcl/console/parse.h>
#include <pcl/console/print.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/visualization/point_cloud_handlers.h>

#include <pcl/gpu/kinfu_large_scale/kinfu.h>
#include <pcl/gpu/containers/device_array.h>
#include <pcl/gpu/containers/initialization.h>
#include "openni_capture.h"

#include "tsdf_volume.h"
#include "tsdf_volume.hpp"

namespace pc = pcl::console;

using PointT = pcl::PointXYZ;
using VoxelT = float;
using WeightT = short;

std::string cloud_file  = "cloud.pcd";
std::string volume_file = "tsdf_volume.dat";

double min_trunc_dist = 30.0f;

bool quit = false, save = false;
bool extract_cloud_volume = false;

///////////////////////////////////////////////////////////////////////////////////////////////////////
/// DEVICE_VOLUME

/** \brief Class for storing and handling the TSDF Volume on the GPU */
class DeviceVolume
{
public:

  using Ptr = shared_ptr<DeviceVolume>;
  using ConstPtr = shared_ptr<const DeviceVolume>;

  /** \brief Constructor
   * param[in] volume_size size of the volume in mm
   * param[in] volume_res volume grid resolution (typically device::VOLUME_X x device::VOLUME_Y x device::VOLUME_Z)
   */
  DeviceVolume (const Eigen::Vector3f &volume_size, const Eigen::Vector3i &volume_res)
    : volume_size_ (volume_size)
  {
    // initialize GPU
    device_volume_.create (volume_res[1] * volume_res[2], volume_res[0]); // (device::VOLUME_Y * device::VOLUME_Z, device::VOLUME_X)
    pcl::device::initVolume (device_volume_);

    // truncation distance
    Eigen::Vector3f voxel_size = volume_size.array() / volume_res.array().cast<float>();
    trunc_dist_ = max ((float)min_trunc_dist, 2.1f * max (voxel_size[0], max (voxel_size[1], voxel_size[2])));
  };

  /** \brief Creates the TSDF volume on the GPU
   * param[in] depth depth readings from the sensor
   * param[in] intr camera intrinsics
   */
  void
  createFromDepth (const pcl::device::PtrStepSz<const unsigned short> &depth, const pcl::device::Intr &intr);

  /** \brief Downloads the volume from the GPU
   * param[out] volume volume structure where the data is written to (size needs to be appropriately set beforehand (is checked))
   */
  bool
  getVolume (pcl::TSDFVolume<VoxelT, WeightT>::Ptr &volume);

  /** \brief Generates and returns a point cloud form the implicit surface in the TSDF volume
   * param[out] cloud point cloud containing the surface
   */
  bool
  getCloud (pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud);

private:

  template<class D, class Matx> D&
  device_cast (Matx& matx)
  {
    return (*reinterpret_cast<D*>(matx.data ()));
  };

  pcl::gpu::DeviceArray2D<int> device_volume_;

  Eigen::Vector3f volume_size_;

  float trunc_dist_;

};


void
DeviceVolume::createFromDepth (const pcl::device::PtrStepSz<const unsigned short> &depth, const pcl::device::Intr &intr)
{
  using namespace pcl;

  using Matrix3frm = Eigen::Matrix<float, 3, 3, Eigen::RowMajor>;

  const int rows = 480;
  const int cols = 640;

  // scale depth values
  gpu::DeviceArray2D<float> device_depth_scaled;
  device_depth_scaled.create (rows, cols);

  // upload depth map on GPU
  pcl::gpu::KinfuTracker::DepthMap device_depth;
  device_depth.upload (depth.data, depth.step, depth.rows, depth.cols);

  // initial camera rotation and translation
  Matrix3frm      init_Rcam = Eigen::Matrix3f::Identity ();
  Eigen::Vector3f init_tcam = volume_size_ * 0.5f - Eigen::Vector3f (0, 0, volume_size_(2)/2 * 1.2f);

  Matrix3frm init_Rcam_inv = init_Rcam.inverse ();
  device::Mat33&  device_Rcam_inv = device_cast<device::Mat33> (init_Rcam_inv);
  float3& device_tcam = device_cast<float3> (init_tcam);

  // integrate depth values into volume
  float3 device_volume_size = device_cast<float3> (volume_size_);
  device::integrateTsdfVolume (device_depth, intr, device_volume_size, device_Rcam_inv, device_tcam, trunc_dist_,
                               device_volume_, device_depth_scaled);
}


bool
DeviceVolume::getVolume (pcl::TSDFVolume<VoxelT, WeightT>::Ptr &volume)
{
  int volume_size = device_volume_.rows() * device_volume_.cols();

  if ((std::size_t)volume_size != volume->size())
  {
    pc::print_error ("Device volume size (%d) and tsdf volume size (%d) don't match. ABORTING!\n", volume_size, volume->size());
    return false;
  }

  std::vector<VoxelT>&  volume_vec  = volume->volumeWriteable();
  std::vector<WeightT>& weights_vec = volume->weightsWriteable();

  device_volume_.download (&volume_vec[0], device_volume_.cols() * sizeof(int));

  #pragma omp parallel for \
    default(none) \
    shared(volume, volume_vec, weights_vec)
  for(int i = 0; i < (int) volume->size(); ++i)
  {
    short2 *elem = (short2*)&volume_vec[i];
    volume_vec[i]  = (float)(elem->x)/pcl::device::DIVISOR;
    weights_vec[i] = (short)(elem->y);
  }

  return true;
}


bool
DeviceVolume::getCloud (pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud)
{
  const int DEFAULT_VOLUME_CLOUD_BUFFER_SIZE = 10 * 1000 * 1000;

  // point buffer on the device
  pcl::gpu::DeviceArray<pcl::PointXYZ> device_cloud_buffer (DEFAULT_VOLUME_CLOUD_BUFFER_SIZE);

  // do the extraction
  float3 device_volume_size = device_cast<float3> (volume_size_);
  /*size_t size =*/ pcl::device::extractCloud (device_volume_, device_volume_size, device_cloud_buffer);

  // write into point cloud structure
  device_cloud_buffer.download (cloud->points);
  cloud->width = cloud->size ();
  cloud->height = 1;

  return true;
}


///////////////////////////////////////////////////////////////////////////////////////////////////////
/// HELPER FUNCTIONS

/** \brief Converts depth and RGB sensor readings into a point cloud
 * param[in] depth depth data from sensor
 * param[in] rgb24 color data from sensor
 * param[in] intr camera intrinsics
 * param[out] cloud the generated point cloud
 * \note: position in mm is converted to m
 * \note: RGB reading not working!
 */
//TODO implement correct color reading (how does rgb24 look like?)
bool
convertDepthRGBToCloud (const pcl::device::PtrStepSz<const unsigned short> &depth, const pcl::device::PtrStepSz<const pcl::gpu::KinfuTracker::PixelRGB> &rgb24, const pcl::device::Intr &intr,
                pcl::PointCloud<PointT>::Ptr &cloud)
{
  // resize point cloud if it doesn't fit
  if (depth.rows != (int)cloud->height || depth.cols != (int)cloud->width)
    cloud = pcl::PointCloud<PointT>::Ptr (new pcl::PointCloud<PointT> (depth.cols, depth.rows));

  // std::cout << "step = " << rgb24.step << std::endl;
  // std::cout << "elem size = " << rgb24.elem_size << std::endl;

  // iterate over all depth and rgb values
  for (int y = 0; y < depth.rows; ++y)
  {
    // get pointers to the values in one row
    const unsigned short *depth_row_ptr = depth.ptr(y);
    // const pcl::gpu::KinfuTracker::RGB *rgb24_row_ptr = rgb24.ptr(y);
    // const char* rgb24_row_ptr = (const char*) rgb24.ptr(y);

    // iterate over row and store values
    for (int x = 0; x < depth.cols; ++x)
    {
      float u = (x - intr.cx) / intr.fx;
      float v = (y - intr.cy) / intr.fy;

      PointT &point = cloud->at (x, y);

      point.z = depth_row_ptr[x] / 1000.0f;
      point.x = u * point.z;
      point.y = v * point.z;

/*      std::uint8_t r = *(rgb24_row_ptr + 0);
      std::uint8_t g = *(rgb24_row_ptr + 1);
      std::uint8_t b = *(rgb24_row_ptr + 2);
      std::uint32_t rgb = ((std::uint32_t)r << 16 | (std::uint32_t)g << 8 | (std::uint32_t)b);
      point.rgb = *reinterpret_cast<float*>(&rgb);

      point.r = *((const char*)rgb24.data + y*rgb24.step + x*rgb24.elem_size);
      point.g = *((const char*)rgb24.data + y*rgb24.step + x*rgb24.elem_size + 1);
      point.b = *((const char*)rgb24.data + y*rgb24.step + x*rgb24.elem_size + 2);
*/
    }
  }

  cloud->is_dense = false;

  return true;
}

/** \brief Captures data from a sensor and generates a point cloud from it
 * param[in] capture capturing device object
 * param[out] depth the depth reading
 * param[out] rgb24 the color reading
 * param[out] intr camera intrinsics for this reading
 * param[out] cloud point cloud generated from the readings
 */
bool
captureCloud (pcl::gpu::CaptureOpenNI &capture,
              pcl::device::PtrStepSz<const unsigned short> &depth, pcl::device::PtrStepSz<const pcl::gpu::KinfuTracker::PixelRGB> &rgb24,
              pcl::device::Intr &intr, pcl::PointCloud<PointT>::Ptr &cloud)
{
  // capture frame
  if (!capture.grab (depth, rgb24))
  {
    pc::print_error ("Can't capture via sensor.\n");
    return false;
  }

  // get intrinsics from capture
  float f = capture.depth_focal_length_VGA;
  intr = pcl::device::Intr (f, f, depth.cols/2, depth.rows/2);

  // generate point cloud
  cloud = pcl::PointCloud<PointT>::Ptr (new pcl::PointCloud<PointT> (depth.cols, depth.rows));
  if (!convertDepthRGBToCloud (depth, rgb24, intr, cloud))
  {
    pc::print_error ("Conversion depth --> cloud was not successful!\n");
    return false;
  }

  return true;
}

/** \brief callback function for the PCLvisualizer */
void
keyboard_callback (const pcl::visualization::KeyboardEvent &event, void *cookie)
{
  if (event.keyDown())
  {
    switch (event.getKeyCode())
    {
      case 27:
      case (int)'q': case (int)'Q':
      case (int)'e': case (int)'E':
        std::cout << "Exiting program" << std::endl;
        quit = true;
        break;
      case (int)'s': case (int)'S':
        std::cout << "Saving volume and cloud" << std::endl;
        save = true;
        break;
      default:
        break;
    }
  }
}

/** \brief prints usage information for the executable */
void
printUsage (char* argv[])
{
  pc::print_error ("usage: %s <options>\n\n", argv[0]);

  pc::print_info  ("  where options are:\n");
  pc::print_info  ("                    -cf = cloud filename (default: ");
  pc::print_value ("%s)", cloud_file.c_str()); pc::print_info (")\n");
  pc::print_info  ("                    -vf = volume filename (default: ");
  pc::print_value ("%s", volume_file.c_str()); pc::print_info (")\n");
  pc::print_info  ("                    -ec = extract cloud from generated volume (default: ");
  pc::print_value ("0 (false)", volume_file.c_str()); pc::print_info (")\n");
  pc::print_info  ("                    -td = minimal truncation distance (default: ");
  pc::print_value ("%f", min_trunc_dist); pc::print_info (")\n");
}


///////////////////////////////////////////////////////////////////////////////////////////////////////
/// MAIN

/** \brief main loop for the program */
int
main (int argc, char* argv[])
{
  pc::print_info ("Records a 2.5 point cloud (organized = depth map) as TSDF volume. For more information, use: %s -h\n", argv[0]);

  /***
   * PARSE COMMAND LINE
   */

  // check for help
  if (pc::find_argument (argc, argv, "-h") > 0)
  {
    pc::print_warn ("Showing help: \n\n");
    printUsage (argv);
    return (EXIT_SUCCESS);
  }

  // parse input cloud file
  pc::parse_argument (argc, argv, "-cf", cloud_file);

  // parse output volume file
  pc::parse_argument (argc, argv, "-vf", volume_file);

  // parse options to extract and save cloud from volume
  pc::parse_argument (argc, argv, "-ec", extract_cloud_volume);

  // parse minimual truncation distance
  pc::parse_argument (argc, argv, "-td", min_trunc_dist);

  /***
   * SET UP AND VISUALIZATION
   */

  pc::print_info (" -------------------- START OF ALGORITHM --------------------\n");

  pcl::gpu::setDevice (0);
  pcl::gpu::printShortCudaDeviceInfo (0);

  pcl::gpu::CaptureOpenNI capture (0);  // first OpenNI device;
  pcl::device::PtrStepSz<const unsigned short> depth;
  pcl::device::PtrStepSz<const pcl::gpu::KinfuTracker::PixelRGB> rgb24;

  pcl::PointCloud<PointT>::Ptr cloud; // (new pcl::PointCloud<PointT>);
  pcl::device::Intr intr;

  // capture first frame
  if (!captureCloud (capture, depth, rgb24, intr, cloud))
    return EXIT_FAILURE;

  // start visualizer
  pcl::visualization::PCLVisualizer visualizer;
  // pcl::visualization::PointCloudColorHandlerRGBField<PointT> color_handler (cloud);
  // pcl::visualization::PointCloudColorHandlerCustom<PointT> color_handler (cloud, 0.5, 0.5, 0.5);
  visualizer.addPointCloud<PointT> (cloud); //, color_handler, "cloud");
  visualizer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1);
  visualizer.addCoordinateSystem (1);
  visualizer.initCameraParameters();
  visualizer.registerKeyboardCallback (keyboard_callback);
  visualizer.spinOnce();

  /***
   * CAPTURING DATA AND GENERATING CLOUD
   */

  pc::print_highlight ("Capturing data ... \n");

  while (!quit && !save)
  {
    // capture data and convert to point cloud
    if (!captureCloud (capture, depth, rgb24, intr, cloud))
      return EXIT_FAILURE;

    // update visualization
    visualizer.updatePointCloud<PointT> (cloud); //, color_handler, "cloud");
    visualizer.spinOnce();
  }

  if (quit)
    return (EXIT_SUCCESS);


  /***
   * GENERATE VOLUME
   */

  // create volume object
  pcl::TSDFVolume<VoxelT, WeightT>::Ptr volume (new pcl::TSDFVolume<VoxelT, WeightT>);
  Eigen::Vector3i resolution (pcl::device::VOLUME_X, pcl::device::VOLUME_Y, pcl::device::VOLUME_Z);
  Eigen::Vector3f volume_size = Eigen::Vector3f::Constant (3000);
  volume->resize (resolution, volume_size);

  DeviceVolume::Ptr device_volume (new DeviceVolume (volume->volumeSize(), volume->gridResolution()));


  // integrate depth in device volume
  pc::print_highlight ("Converting depth map to volume ... "); std::cout << std::flush;
  device_volume->createFromDepth (depth, intr);

  // get volume from device
  if (!device_volume->getVolume (volume))
  {
    pc::print_error ("Coudln't get volume from device!\n");
    return (EXIT_FAILURE);
  }
  pc::print_info ("done [%d voxels]\n", volume->size());


  // generating TSDF cloud
  pc::print_highlight ("Generating tsdf volume cloud ... "); std::cout << std::flush;
  pcl::PointCloud<pcl::PointXYZI>::Ptr tsdf_cloud (new pcl::PointCloud<pcl::PointXYZI>);
  volume->convertToTsdfCloud (tsdf_cloud);
  pc::print_info ("done [%d points]\n", tsdf_cloud->size());


  // get cloud from volume
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_volume (new pcl::PointCloud<pcl::PointXYZ>);
  if (extract_cloud_volume)
  {
    pc::print_highlight ("Generating cloud from volume ... "); std::cout << std::flush;
    if (!device_volume->getCloud (cloud_volume))
    {
      pc::print_error ("Cloudn't get cloud from device volume!\n");
      return (EXIT_FAILURE);
    }
    pc::print_info ("done [%d points]\n", cloud_volume->size());
  }


  /***
   * STORE RESULTS
   */

  pc::print_highlight ("Storing results:\n");

  // point cloud
  pc::print_info ("Saving captured cloud to "); pc::print_value ("%s", cloud_file.c_str()); pc::print_info (" ... ");
  if (pcl::io::savePCDFile (cloud_file, *cloud, true) < 0)
  {
    std::cout << std::endl;
    pc::print_error ("Cloudn't save the point cloud to file %s.\n", cloud_file.c_str());
  }
  else
    pc::print_info ("done [%d points].\n", cloud->size());

  // volume
  if (!volume->save (volume_file, true))
    pc::print_error ("Cloudn't save the volume to file %s.\n", volume_file.c_str());

  // TSDF point cloud
  std::string tsdf_cloud_file (pcl::getFilenameWithoutExtension(volume_file) + "_cloud.pcd");
  pc::print_info ("Saving volume cloud to "); pc::print_value ("%s", tsdf_cloud_file.c_str()); pc::print_info (" ... ");
  if (pcl::io::savePCDFile (tsdf_cloud_file, *tsdf_cloud, true) < 0)
  {
    std::cout << std::endl;
    pc::print_error ("Cloudn't save the volume point cloud to file %s.\n", tsdf_cloud_file.c_str());
  }
  else
    pc::print_info ("done [%d points].\n", tsdf_cloud->size());

  // point cloud from volume
  if (extract_cloud_volume)
  {
    std::string cloud_volume_file (pcl::getFilenameWithoutExtension(cloud_file) + "_from_volume.pcd");
    pc::print_info ("Saving cloud from volume to "); pc::print_value ("%s", cloud_volume_file.c_str()); pc::print_info (" ... ");
    if (pcl::io::savePCDFile (cloud_volume_file, *cloud_volume, true) < 0)
    {
      std::cout << std::endl;
      pc::print_error ("Cloudn't save the point cloud to file %s.\n", cloud_volume_file.c_str());
    }
    else
      pc::print_info ("done [%d points].\n", cloud_volume->size());
  }

  pc::print_info (" --------------------  END OF ALGORITHM  --------------------\n");

}