1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
|
/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2012, Willow Garage, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id: $
*
*/
#include <pcl/test/gtest.h>
#include <pcl/io/pcd_io.h>
#include <pcl/point_cloud.h>
#include <pcl/common/transforms.h>
#include <pcl/correspondence.h>
#include <pcl/features/normal_3d_omp.h>
#include <pcl/features/shot_omp.h>
#include <pcl/features/board.h>
#include <pcl/filters/uniform_sampling.h>
#include <pcl/recognition/cg/hough_3d.h>
#include <pcl/recognition/cg/geometric_consistency.h>
#include <pcl/common/eigen.h>
using namespace pcl;
using namespace pcl::io;
using PointType = PointXYZ;
using NormalType = Normal;
using RFType = ReferenceFrame;
using DescriptorType = SHOT352;
PointCloud<PointType>::Ptr model_ (new PointCloud<PointType> ());
PointCloud<PointType>::Ptr model_downsampled_ (new PointCloud<PointType> ());
PointCloud<PointType>::Ptr scene_ (new PointCloud<PointType> ());
PointCloud<PointType>::Ptr scene_downsampled_ (new PointCloud<PointType> ());
PointCloud<NormalType>::Ptr model_normals_ (new PointCloud<NormalType> ());
PointCloud<NormalType>::Ptr scene_normals_ (new PointCloud<NormalType> ());
PointCloud<DescriptorType>::Ptr model_descriptors_ (new PointCloud<DescriptorType> ());
PointCloud<DescriptorType>::Ptr scene_descriptors_ (new PointCloud<DescriptorType> ());
CorrespondencesPtr model_scene_corrs_ (new Correspondences ());
double
computeRmsE (const PointCloud<PointType>::ConstPtr &model, const PointCloud<PointType>::ConstPtr &scene, const Eigen::Matrix4f &rototranslation)
{
PointCloud<PointType> transformed_model;
transformPointCloud (*model, transformed_model, rototranslation);
KdTreeFLANN<PointType> tree;
tree.setInputCloud (scene);
double sqr_norm_sum = 0;
int found_points = 0;
pcl::Indices neigh_indices (1);
std::vector<float> neigh_sqr_dists (1);
for (const auto &model : transformed_model)
{
int found_neighs = tree.nearestKSearch (model, 1, neigh_indices, neigh_sqr_dists);
if(found_neighs == 1)
{
++found_points;
sqr_norm_sum += static_cast<double> (neigh_sqr_dists[0]);
}
}
if (found_points > 0)
return sqrt (sqr_norm_sum / static_cast<double>(transformed_model.size ()));
return std::numeric_limits<double>::max ();
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
TEST (PCL, Hough3DGrouping)
{
PointCloud<RFType>::Ptr model_rf (new PointCloud<RFType> ());
PointCloud<RFType>::Ptr scene_rf (new PointCloud<RFType> ());
//RFs
BOARDLocalReferenceFrameEstimation<PointType, NormalType, RFType> rf_est;
rf_est.setRadiusSearch (0.015);
rf_est.setInputCloud (model_downsampled_);
rf_est.setInputNormals (model_normals_);
rf_est.setSearchSurface (model_);
rf_est.compute (*model_rf);
rf_est.setInputCloud (scene_downsampled_);
rf_est.setInputNormals (scene_normals_);
rf_est.setSearchSurface (scene_);
rf_est.compute (*scene_rf);
std::vector<Eigen::Matrix4f, Eigen::aligned_allocator<Eigen::Matrix4f> > rototranslations;
//Actual CG
Hough3DGrouping<PointType, PointType, RFType, RFType> clusterer;
clusterer.setInputCloud (model_downsampled_);
clusterer.setInputRf (model_rf);
clusterer.setSceneCloud (scene_downsampled_);
clusterer.setSceneRf (scene_rf);
clusterer.setModelSceneCorrespondences (model_scene_corrs_);
clusterer.setHoughBinSize (0.03);
clusterer.setHoughThreshold (10);
EXPECT_TRUE (clusterer.recognize (rototranslations));
//Assertions
ASSERT_GE (rototranslations.size (), 1);
// Pick transformation with lowest error
double min_rms_e = std::numeric_limits<double>::max ();
for (const auto &rototranslation : rototranslations)
min_rms_e = std::min (min_rms_e, computeRmsE (model_, scene_, rototranslation));
EXPECT_LT (min_rms_e, 1E-2);
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
TEST (PCL, GeometricConsistencyGrouping)
{
std::vector<Eigen::Matrix4f, Eigen::aligned_allocator<Eigen::Matrix4f> > rototranslations;
GeometricConsistencyGrouping<PointType, PointType> clusterer;
clusterer.setInputCloud (model_downsampled_);
clusterer.setSceneCloud (scene_downsampled_);
clusterer.setModelSceneCorrespondences (model_scene_corrs_);
clusterer.setGCSize (0.001);
clusterer.setGCThreshold (25);
EXPECT_TRUE (clusterer.recognize (rototranslations));
//Assertions
EXPECT_EQ (rototranslations.size (), 1);
EXPECT_LT (computeRmsE (model_, scene_, rototranslations[0]), 1E-4) << std::endl << rototranslations[0] << std::endl << model_downsampled_->size() << std::endl << scene_downsampled_->size() << std::endl << model_scene_corrs_->size() << std::endl;
}
/* ---[ */
int
main (int argc, char** argv)
{
if (argc < 3)
{
std::cerr << "No test file given. Please download `milk.pcd` and `milk_cartoon_all_small_clorox.pcd` and pass their paths to the test." << std::endl;
return (-1);
}
if (loadPCDFile (argv[1], *model_) < 0)
{
std::cerr << "Failed to read test file. Please download `milk.pcd` and pass its path to the test." << std::endl;
return (-1);
}
if (loadPCDFile (argv[2], *scene_) < 0)
{
std::cerr << "Failed to read test file. Please download `milk_cartoon_all_small_clorox.pcd` and pass its path to the test." << std::endl;
return (-1);
}
//Normals
NormalEstimationOMP<PointType, NormalType> norm_est;
norm_est.setKSearch (10);
norm_est.setInputCloud (model_);
norm_est.compute (*model_normals_);
norm_est.setInputCloud (scene_);
norm_est.compute (*scene_normals_);
//Downsampling
UniformSampling<PointType> uniform_sampling;
uniform_sampling.setInputCloud (model_);
uniform_sampling.setRadiusSearch (0.005);
uniform_sampling.filter (*model_downsampled_);
uniform_sampling.setInputCloud (scene_);
uniform_sampling.setRadiusSearch (0.02);
uniform_sampling.filter (*scene_downsampled_);
//Descriptor
SHOTEstimationOMP<PointType, NormalType, DescriptorType> descr_est;
descr_est.setRadiusSearch (0.015);
descr_est.setInputCloud (model_downsampled_);
descr_est.setInputNormals (model_normals_);
descr_est.setSearchSurface (model_);
descr_est.compute (*model_descriptors_);
descr_est.setInputCloud (scene_downsampled_);
descr_est.setInputNormals (scene_normals_);
descr_est.setSearchSurface (scene_);
descr_est.compute (*scene_descriptors_);
//Correspondences with KdTree
KdTreeFLANN<DescriptorType> match_search;
match_search.setInputCloud (model_descriptors_);
for (std::size_t i = 0; i < scene_descriptors_->size (); ++i)
{
if ( std::isfinite( scene_descriptors_->at (i).descriptor[0] ) )
{
pcl::Indices neigh_indices (1);
std::vector<float> neigh_sqr_dists (1);
int found_neighs = match_search.nearestKSearch (scene_descriptors_->at (i), 1, neigh_indices, neigh_sqr_dists);
if(found_neighs == 1 && neigh_sqr_dists[0] < 0.25f)
{
Correspondence corr (neigh_indices[0], static_cast<int> (i), neigh_sqr_dists[0]);
model_scene_corrs_->push_back (corr);
}
}
}
testing::InitGoogleTest (&argc, argv);
return (RUN_ALL_TESTS ());
}
/* ]--- */
|