1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2011, Willow Garage, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*
*/
#include <iostream>
#include <pcl/test/gtest.h>
#include <pcl/common/io.h> // for copyPointCloud
#include <pcl/common/time.h>
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <pcl/common/distances.h>
#include <pcl/search/kdtree.h> // for KdTree
using namespace pcl;
PointCloud<PointXYZ> cloud, cloud_big;
void
init ()
{
float resolution = 0.1f;
for (float z = -0.5f; z <= 0.5f; z += resolution)
for (float y = -0.5f; y <= 0.5f; y += resolution)
for (float x = -0.5f; x <= 0.5f; x += resolution)
cloud.emplace_back(x, y, z);
cloud.width = cloud.size ();
cloud.height = 1;
srand (static_cast<unsigned int> (time (nullptr)));
cloud_big.width = 640;
cloud_big.height = 480;
// Randomly create a new point cloud, use points.emplace_back
for (std::size_t i = 0; i < cloud_big.width * cloud_big.height; ++i)
cloud_big.points.emplace_back(static_cast<float>(1024 * rand() / (RAND_MAX + 1.0)),
static_cast<float>(1024 * rand() / (RAND_MAX + 1.0)),
static_cast<float>(1024 * rand() / (RAND_MAX + 1.0)));
}
/* Test for KdTree nearestKSearch */TEST (PCL, KdTree_nearestKSearch)
{
pcl::search::KdTree<PointXYZ> kdtree;
kdtree.setInputCloud (cloud.makeShared ());
PointXYZ test_point (0.01f, 0.01f, 0.01f);
unsigned int no_of_neighbors = 20;
std::multimap<float, int> sorted_brute_force_result;
for (std::size_t i = 0; i < cloud.size (); ++i)
{
float distance = euclideanDistance (cloud[i], test_point);
sorted_brute_force_result.insert (std::make_pair (distance, static_cast<int> (i)));
}
float max_dist = 0.0f;
unsigned int counter = 0;
for (auto it = sorted_brute_force_result.begin (); it != sorted_brute_force_result.end ()
&& counter < no_of_neighbors; ++it)
{
max_dist = std::max (max_dist, it->first);
++counter;
}
pcl::Indices k_indices;
k_indices.resize (no_of_neighbors);
std::vector<float> k_distances;
k_distances.resize (no_of_neighbors);
kdtree.nearestKSearch (test_point, no_of_neighbors, k_indices, k_distances);
//if (k_indices.size () != no_of_neighbors) std::cerr << "Found "<<k_indices.size ()<<" instead of "<<no_of_neighbors<<" neighbors.\n";
EXPECT_EQ (k_indices.size (), no_of_neighbors);
// Check if all found neighbors have distance smaller than max_dist
for (const auto &k_index : k_indices)
{
const PointXYZ& point = cloud[k_index];
bool ok = euclideanDistance (test_point, point) <= max_dist;
if (!ok)
ok = (std::abs (euclideanDistance (test_point, point)) - max_dist) <= 1e-6;
//if (!ok) std::cerr << k_indices[i] << " is not correct...\n";
//else std::cerr << k_indices[i] << " is correct...\n";
EXPECT_TRUE (ok);
}
ScopeTime scopeTime ("FLANN nearestKSearch");
{
pcl::search::KdTree<PointXYZ> kdtree;
//kdtree.initSearchDS ();
kdtree.setInputCloud (cloud_big.makeShared ());
for (const auto &point : cloud_big.points)
kdtree.nearestKSearch (point, no_of_neighbors, k_indices, k_distances);
}
}
/* Test the templated NN search (for different query point types) */
TEST (PCL, KdTree_differentPointT)
{
unsigned int no_of_neighbors = 20;
pcl::search::KdTree<PointXYZ> kdtree;
//kdtree.initSearchDS ();
kdtree.setInputCloud (cloud_big.makeShared ());
PointCloud<PointXYZRGB> cloud_rgb;
copyPointCloud (cloud_big, cloud_rgb);
std::vector< std::vector< float > > dists;
std::vector< pcl::Indices > indices;
kdtree.nearestKSearchT (cloud_rgb, pcl::Indices (),no_of_neighbors,indices,dists);
pcl::Indices k_indices;
k_indices.resize (no_of_neighbors);
std::vector<float> k_distances;
k_distances.resize (no_of_neighbors);
pcl::Indices k_indices_t;
k_indices_t.resize (no_of_neighbors);
std::vector<float> k_distances_t;
k_distances_t.resize (no_of_neighbors);
for (std::size_t i = 0; i < cloud_rgb.size (); ++i)
{
kdtree.nearestKSearchT<pcl::PointXYZRGB> (cloud_rgb[i], no_of_neighbors, k_indices_t, k_distances_t);
kdtree.nearestKSearch (cloud_big[i], no_of_neighbors, k_indices, k_distances);
EXPECT_EQ (k_indices.size (), indices[i].size ());
EXPECT_EQ (k_distances.size (), dists[i].size ());
for (std::size_t j=0; j< no_of_neighbors; j++)
{
EXPECT_TRUE (k_indices[j] == indices[i][j] || k_distances[j] == dists[i][j]);
EXPECT_EQ (k_indices[j], k_indices_t[j]);
EXPECT_EQ (k_distances[j], k_distances_t[j]);
}
}
}
/* Test for KdTree nearestKSearch with multiple query points */
TEST (PCL, KdTree_multipointKnnSearch)
{
unsigned int no_of_neighbors = 20;
pcl::search::KdTree<PointXYZ> kdtree;
//kdtree.initSearchDS ();
kdtree.setInputCloud (cloud_big.makeShared ());
std::vector< std::vector< float > > dists;
std::vector< pcl::Indices > indices;
kdtree.nearestKSearch (cloud_big, pcl::Indices (),no_of_neighbors,indices,dists);
pcl::Indices k_indices;
k_indices.resize (no_of_neighbors);
std::vector<float> k_distances;
k_distances.resize (no_of_neighbors);
for (std::size_t i = 0; i < cloud_big.size (); ++i)
{
kdtree.nearestKSearch (cloud_big[i], no_of_neighbors, k_indices, k_distances);
EXPECT_EQ (k_indices.size (), indices[i].size ());
EXPECT_EQ (k_distances.size (), dists[i].size ());
for (std::size_t j=0; j< no_of_neighbors; j++)
{
EXPECT_TRUE( k_indices[j]==indices[i][j] || k_distances[j] == dists[i][j]);
}
}
}
int
main (int argc, char** argv)
{
testing::InitGoogleTest (&argc, argv);
init ();
// Testing using explicit instantiation of inherited class
pcl::search::KdTree<PointXYZ> kdtree;
kdtree.setInputCloud (cloud.makeShared ());
return (RUN_ALL_TESTS ());
}
|