1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
|
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/console/time.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/features/normal_3d.h>
#include <pcl/segmentation/conditional_euclidean_clustering.h>
typedef pcl::PointXYZI PointTypeIO;
typedef pcl::PointXYZINormal PointTypeFull;
bool
enforceIntensitySimilarity (const PointTypeFull& point_a, const PointTypeFull& point_b, float squared_distance)
{
if (fabs (point_a.intensity - point_b.intensity) < 5.0f)
return (true);
else
return (false);
}
bool
enforceCurvatureOrIntensitySimilarity (const PointTypeFull& point_a, const PointTypeFull& point_b, float squared_distance)
{
Eigen::Map<const Eigen::Vector3f> point_a_normal = point_a.normal, point_b_normal = point_b.normal;
if (fabs (point_a.intensity - point_b.intensity) < 5.0f)
return (true);
if (fabs (point_a_normal.dot (point_b_normal)) < 0.05)
return (true);
return (false);
}
bool
customRegionGrowing (const PointTypeFull& point_a, const PointTypeFull& point_b, float squared_distance)
{
Eigen::Map<const Eigen::Vector3f> point_a_normal = point_a.normal, point_b_normal = point_b.normal;
if (squared_distance < 10000)
{
if (fabs (point_a.intensity - point_b.intensity) < 8.0f)
return (true);
if (fabs (point_a_normal.dot (point_b_normal)) < 0.06)
return (true);
}
else
{
if (fabs (point_a.intensity - point_b.intensity) < 3.0f)
return (true);
}
return (false);
}
int
main (int argc, char** argv)
{
// Data containers used
pcl::PointCloud<PointTypeIO>::Ptr cloud_in (new pcl::PointCloud<PointTypeIO>), cloud_out (new pcl::PointCloud<PointTypeIO>);
pcl::PointCloud<PointTypeFull>::Ptr cloud_with_normals (new pcl::PointCloud<PointTypeFull>);
pcl::IndicesClustersPtr clusters (new pcl::IndicesClusters), small_clusters (new pcl::IndicesClusters), large_clusters (new pcl::IndicesClusters);
pcl::search::KdTree<PointTypeIO>::Ptr search_tree (new pcl::search::KdTree<PointTypeIO>);
pcl::console::TicToc tt;
// Load the input point cloud
std::cerr << "Loading...\n", tt.tic ();
pcl::io::loadPCDFile ("Statues_4.pcd", *cloud_in);
std::cerr << ">> Done: " << tt.toc () << " ms, " << cloud_in->points.size () << " points\n";
// Downsample the cloud using a Voxel Grid class
std::cerr << "Downsampling...\n", tt.tic ();
pcl::VoxelGrid<PointTypeIO> vg;
vg.setInputCloud (cloud_in);
vg.setLeafSize (80.0, 80.0, 80.0);
vg.setDownsampleAllData (true);
vg.filter (*cloud_out);
std::cerr << ">> Done: " << tt.toc () << " ms, " << cloud_out->points.size () << " points\n";
// Set up a Normal Estimation class and merge data in cloud_with_normals
std::cerr << "Computing normals...\n", tt.tic ();
pcl::copyPointCloud (*cloud_out, *cloud_with_normals);
pcl::NormalEstimation<PointTypeIO, PointTypeFull> ne;
ne.setInputCloud (cloud_out);
ne.setSearchMethod (search_tree);
ne.setRadiusSearch (300.0);
ne.compute (*cloud_with_normals);
std::cerr << ">> Done: " << tt.toc () << " ms\n";
// Set up a Conditional Euclidean Clustering class
std::cerr << "Segmenting to clusters...\n", tt.tic ();
pcl::ConditionalEuclideanClustering<PointTypeFull> cec (true);
cec.setInputCloud (cloud_with_normals);
cec.setConditionFunction (&customRegionGrowing);
cec.setClusterTolerance (500.0);
cec.setMinClusterSize (cloud_with_normals->points.size () / 1000);
cec.setMaxClusterSize (cloud_with_normals->points.size () / 5);
cec.segment (*clusters);
cec.getRemovedClusters (small_clusters, large_clusters);
std::cerr << ">> Done: " << tt.toc () << " ms\n";
// Using the intensity channel for lazy visualization of the output
for (int i = 0; i < small_clusters->size (); ++i)
for (int j = 0; j < (*small_clusters)[i].indices.size (); ++j)
cloud_out->points[(*small_clusters)[i].indices[j]].intensity = -2.0;
for (int i = 0; i < large_clusters->size (); ++i)
for (int j = 0; j < (*large_clusters)[i].indices.size (); ++j)
cloud_out->points[(*large_clusters)[i].indices[j]].intensity = +10.0;
for (int i = 0; i < clusters->size (); ++i)
{
int label = rand () % 8;
for (int j = 0; j < (*clusters)[i].indices.size (); ++j)
cloud_out->points[(*clusters)[i].indices[j]].intensity = label;
}
// Save the output point cloud
std::cerr << "Saving...\n", tt.tic ();
pcl::io::savePCDFile ("output.pcd", *cloud_out);
std::cerr << ">> Done: " << tt.toc () << " ms\n";
return (0);
}
|