File: resampling.cpp

package info (click to toggle)
pcl 1.8.0%2Bdfsg1-4%2Bdeb9u1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 141,092 kB
  • sloc: cpp: 515,897; xml: 28,792; ansic: 13,844; python: 539; lisp: 93; makefile: 85; sh: 27
file content (36 lines) | stat: -rw-r--r-- 1,104 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/kdtree/kdtree_flann.h>
#include <pcl/surface/mls.h>

int
main (int argc, char** argv)
{
  // Load input file into a PointCloud<T> with an appropriate type
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ> ());
  // Load bun0.pcd -- should be available with the PCL archive in test 
  pcl::io::loadPCDFile ("bun0.pcd", *cloud);

  // Create a KD-Tree
  pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);

  // Output has the PointNormal type in order to store the normals calculated by MLS
  pcl::PointCloud<pcl::PointNormal> mls_points;

  // Init object (second point type is for the normals, even if unused)
  pcl::MovingLeastSquares<pcl::PointXYZ, pcl::PointNormal> mls;
 
  mls.setComputeNormals (true);

  // Set parameters
  mls.setInputCloud (cloud);
  mls.setPolynomialFit (true);
  mls.setSearchMethod (tree);
  mls.setSearchRadius (0.03);

  // Reconstruct
  mls.process (mls_points);

  // Save output
  pcl::io::savePCDFile ("bun0-mls.pcd", mls_points);
}