1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
|
#include <pcl/common/distances.h>
#include <pcl/console/parse.h>
#include <pcl/console/time.h>
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/filters/passthrough.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/sample_consensus/method_types.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/filters/conditional_removal.h>
#include <pcl/segmentation/extract_clusters.h>
#define MIN_NR_INLIERS_LINE 40
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT>
class ConditionThresholdHSV : public pcl::ConditionBase<PointT>
{
public:
typedef typename boost::shared_ptr<ConditionThresholdHSV<PointT> > Ptr;
ConditionThresholdHSV (float min_h, float max_h, float min_s, float max_s, float min_v, float max_v) :
min_h_(min_h), max_h_(max_h), min_s_(min_s), max_s_(max_s), min_v_(min_v), max_v_(max_v)
{
// Make min_h_ and max_h_ fall within [0, 360)
assert (!pcl_isnan(min_h) && !pcl_isnan(max_h));
while (min_h_ < 0) min_h_ += 360;
while (min_h_ >= 360) min_h_ -= 360;
while (max_h_ < 0) max_h_ += 360;
while (max_h_ >= 360) max_h_ -= 360;
}
// Evaluate whether the color of the given point falls within the specified thresholds
virtual bool evaluate(const PointT & p) const
{
float h, s, v;
rgb2hsv (p.r, p.g, p.b, h, s, v);
return (!pcl_isnan(h) && !pcl_isnan(s) && !pcl_isnan(v) &&
((min_h_ < max_h_) ? ((min_h_ <= h) && (h <= max_h_)) : ((min_h_ <= h) || (h <= max_h_))) &&
(min_s_ <= s) && (s <= max_s_) &&
(min_v_ <= v) && (v <= max_v_));
}
void rgb2hsv (uint8_t r, uint8_t g, uint8_t b, float & h, float & s, float & v) const
{
float maxval = (r > g) ? ((r > b) ? r : b) : ((g > b) ? g : b);
float minval = (r < g) ? ((r < b) ? r : b) : ((g < b) ? g : b);
float minmaxdiff = maxval - minval;
if (maxval == minval)
{
h = 0;
s = 0;
v = maxval;
return;
}
else if (maxval == r)
{
h = 60.0*((g - b)/minmaxdiff);
if (h < 0) h += 360.0;
}
else if (maxval == g)
{
h = 60.0*((b - r)/minmaxdiff + 2.0);
}
else // (maxval == b)
{
h = 60.0*((r - g)/minmaxdiff + 4.0);
}
s = 100.0 * minmaxdiff / maxval;
v = maxval;
}
protected:
float min_h_, max_h_, min_s_, max_s_, min_v_, max_v_;
};
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void
filterRed (const pcl::PointCloud<pcl::PointXYZRGB>::Ptr &input, pcl::PointCloud<pcl::PointXYZRGB>::Ptr &output)
{
pcl::ConditionalRemoval<pcl::PointXYZRGB> removal_filter;
removal_filter.setKeepOrganized (false);
ConditionThresholdHSV<pcl::PointXYZRGB>::Ptr condition (new ConditionThresholdHSV<pcl::PointXYZRGB> (-20,20, 75,100, 25,255));
removal_filter.setCondition (condition);
removal_filter.setInputCloud (input);
removal_filter.filter (*output);
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void
filterGreen (const pcl::PointCloud<pcl::PointXYZRGB>::Ptr &input, pcl::PointCloud<pcl::PointXYZRGB>::Ptr &output)
{
pcl::ConditionalRemoval<pcl::PointXYZRGB> removal_filter;
removal_filter.setKeepOrganized (false);
ConditionThresholdHSV<pcl::PointXYZRGB>::Ptr condition (new ConditionThresholdHSV<pcl::PointXYZRGB> (90,150, 15,100, 25,255));
removal_filter.setCondition (condition);
removal_filter.setInputCloud (input);
removal_filter.filter (*output);
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void
downsample (const pcl::PointCloud<pcl::PointXYZRGB>::Ptr &input,
pcl::PointCloud<pcl::PointXYZRGB>::Ptr &output)
{
pcl::VoxelGrid<pcl::PointXYZRGB> pass;
pass.setInputCloud (input);
pass.setLeafSize (0.005, 0.005, 0.005);
pass.setFilterFieldName ("z");
pass.setFilterLimits (0.0, 2.0);
pass.filter (*output);
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void
extractLargestCluster (const pcl::PointCloud<pcl::PointXYZRGB>::Ptr &input,
const pcl::PointIndices::Ptr &inliers_all,
pcl::PointIndices &inliers)
{
pcl::EuclideanClusterExtraction<pcl::PointXYZRGB> ece;
ece.setInputCloud (input);
ece.setIndices (inliers_all);
ece.setClusterTolerance (0.3); // 30cm cluster separation
std::vector<pcl::PointIndices> clusters;
ece.extract (clusters);
inliers = clusters[0];
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void
compute (const pcl::PointCloud<pcl::PointXYZRGB>::Ptr &input,
pcl::PointCloud<pcl::PointXYZRGB>::Ptr &output,
pcl::ModelCoefficients &coefficients,
pcl::PointIndices &inliers)
{
// Filter
pcl::PointCloud<pcl::PointXYZRGB>::Ptr output_down (new pcl::PointCloud<pcl::PointXYZRGB>);
downsample (input, output_down);
if (output_down->points.empty ())
{
inliers.indices.clear ();
coefficients.values.clear ();
return;
}
filterGreen (output_down, output);
if (output->points.empty ())
{
inliers.indices.clear ();
coefficients.values.clear ();
return;
}
pcl::SACSegmentation<pcl::PointXYZRGB> seg;
seg.setInputCloud (output);
seg.setOptimizeCoefficients (false);
seg.setProbability (0.99);
seg.setMaxIterations (10000);
seg.setModelType (pcl::SACMODEL_STICK);
seg.setMethodType (pcl::SAC_RANSAC);
seg.setDistanceThreshold (0.02);
//seg.setRadiusLimits (0.02, 0.08);
pcl::PointIndices::Ptr inliers_all (new pcl::PointIndices);
seg.segment (*inliers_all, coefficients);
if (inliers_all->indices.size () < MIN_NR_INLIERS_LINE)
{
inliers.indices.clear ();
coefficients.values.clear ();
return;
}
extractLargestCluster (output, inliers_all, inliers);
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
int
main (int argc, char** argv)
{
srand (time (0));
pcl::visualization::PCLVisualizer p (argc, argv, "Line segmentation");
pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZRGB>);
pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_d (new pcl::PointCloud<pcl::PointXYZRGB>);
pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_f (new pcl::PointCloud<pcl::PointXYZRGB>);
pcl::ModelCoefficients coefficients;
pcl::PointIndices inliers;
std::vector<int> p_file_indices = pcl::console::parse_file_extension_argument (argc, argv, ".pcd");
for (size_t i = 0; i < p_file_indices.size (); ++i)
{
pcl::io::loadPCDFile (argv[p_file_indices[i]], *cloud);
// Compute
pcl::console::TicToc tt;
tt.tic ();
compute (cloud, cloud_f, coefficients, inliers);
tt.toc_print ();
if (inliers.indices.empty ())
{
p.removeShape ("line");
continue;
}
// Display
PCL_INFO ("Found %lu inliers.\n", inliers.indices.size ());
pcl::PointCloud<pcl::PointXYZ>::Ptr line (new pcl::PointCloud<pcl::PointXYZ>);
pcl::copyPointCloud (*cloud_f, inliers, *line);
if (!p.updatePointCloud (cloud, "all"))
{
p.addPointCloud (cloud, "all");
p.resetCameraViewpoint ("all");
}
if (!p.updatePointCloud (cloud_f, "filter"))
p.addPointCloud (cloud_f, "filter");
p.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 10.0, "filter");
p.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_OPACITY, 0.2, "filter");
if (!p.updatePointCloud (line, "line inliers"))
p.addPointCloud (line, "line inliers");
pcl::PointXYZRGB pmin, pmax;
if (pcl::getMaxSegment (*cloud_f, inliers.indices, pmin, pmax) != std::numeric_limits<double>::min ())
p.addLine<pcl::PointXYZRGB> (pmin, pmax);
else
{
pmin.x = coefficients.values[0]; pmin.y = coefficients.values[1]; pmin.z = coefficients.values[2];
pmax.x = coefficients.values[3]; pmax.y = coefficients.values[4]; pmax.z = coefficients.values[5];
PCL_ERROR ("Couldn't compute the maximum segment!\n");
p.addLine<pcl::PointXYZRGB> (pmin, pmax);
//p.addLine (coefficients);
}
p.setShapeRenderingProperties (pcl::visualization::PCL_VISUALIZER_LINE_WIDTH, 50.0, "line");
p.setShapeRenderingProperties (pcl::visualization::PCL_VISUALIZER_COLOR, 1.0, 1.0, 0.0, "line");
if (p_file_indices.size () == 1)
p.spin ();
p.spinOnce ();
p.removeShape ("line");
}
if (p_file_indices.size () != 1)
p.spin ();
return (0);
}
|