1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
#include <pcl/point_types.h>
#include <pcl/point_cloud.h>
#include <pcl/common/common.h>
#include <pcl/common/transforms.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/console/parse.h>
#include <pcl/console/print.h>
#include <pcl/io/pcd_io.h>
#include <iostream>
#include <flann/flann.h>
#include <flann/io/hdf5.h>
#include <boost/filesystem.hpp>
typedef std::pair<std::string, std::vector<float> > vfh_model;
/** \brief Loads an n-D histogram file as a VFH signature
* \param path the input file name
* \param vfh the resultant VFH model
*/
bool
loadHist (const boost::filesystem::path &path, vfh_model &vfh)
{
int vfh_idx;
// Load the file as a PCD
try
{
pcl::PCLPointCloud2 cloud;
int version;
Eigen::Vector4f origin;
Eigen::Quaternionf orientation;
pcl::PCDReader r;
int type; unsigned int idx;
r.readHeader (path.string (), cloud, origin, orientation, version, type, idx);
vfh_idx = pcl::getFieldIndex (cloud, "vfh");
if (vfh_idx == -1)
return (false);
if ((int)cloud.width * cloud.height != 1)
return (false);
}
catch (const pcl::InvalidConversionException&)
{
return (false);
}
// Treat the VFH signature as a single Point Cloud
pcl::PointCloud <pcl::VFHSignature308> point;
pcl::io::loadPCDFile (path.string (), point);
vfh.second.resize (308);
std::vector <pcl::PCLPointField> fields;
getFieldIndex (point, "vfh", fields);
for (size_t i = 0; i < fields[vfh_idx].count; ++i)
{
vfh.second[i] = point.points[0].histogram[i];
}
vfh.first = path.string ();
return (true);
}
/** \brief Search for the closest k neighbors
* \param index the tree
* \param model the query model
* \param k the number of neighbors to search for
* \param indices the resultant neighbor indices
* \param distances the resultant neighbor distances
*/
inline void
nearestKSearch (flann::Index<flann::ChiSquareDistance<float> > &index, const vfh_model &model,
int k, flann::Matrix<int> &indices, flann::Matrix<float> &distances)
{
// Query point
flann::Matrix<float> p = flann::Matrix<float>(new float[model.second.size ()], 1, model.second.size ());
memcpy (&p.ptr ()[0], &model.second[0], p.cols * p.rows * sizeof (float));
indices = flann::Matrix<int>(new int[k], 1, k);
distances = flann::Matrix<float>(new float[k], 1, k);
index.knnSearch (p, indices, distances, k, flann::SearchParams (512));
delete[] p.ptr ();
}
/** \brief Load the list of file model names from an ASCII file
* \param models the resultant list of model name
* \param filename the input file name
*/
bool
loadFileList (std::vector<vfh_model> &models, const std::string &filename)
{
ifstream fs;
fs.open (filename.c_str ());
if (!fs.is_open () || fs.fail ())
return (false);
std::string line;
while (!fs.eof ())
{
getline (fs, line);
if (line.empty ())
continue;
vfh_model m;
m.first = line;
models.push_back (m);
}
fs.close ();
return (true);
}
int
main (int argc, char** argv)
{
int k = 6;
double thresh = DBL_MAX; // No threshold, disabled by default
if (argc < 2)
{
pcl::console::print_error
("Need at least three parameters! Syntax is: %s <query_vfh_model.pcd> [options] {kdtree.idx} {training_data.h5} {training_data.list}\n", argv[0]);
pcl::console::print_info (" where [options] are: -k = number of nearest neighbors to search for in the tree (default: ");
pcl::console::print_value ("%d", k); pcl::console::print_info (")\n");
pcl::console::print_info (" -thresh = maximum distance threshold for a model to be considered VALID (default: ");
pcl::console::print_value ("%f", thresh); pcl::console::print_info (")\n\n");
return (-1);
}
std::string extension (".pcd");
transform (extension.begin (), extension.end (), extension.begin (), (int(*)(int))tolower);
// Load the test histogram
std::vector<int> pcd_indices = pcl::console::parse_file_extension_argument (argc, argv, ".pcd");
vfh_model histogram;
if (!loadHist (argv[pcd_indices.at (0)], histogram))
{
pcl::console::print_error ("Cannot load test file %s\n", argv[pcd_indices.at (0)]);
return (-1);
}
pcl::console::parse_argument (argc, argv, "-thresh", thresh);
// Search for the k closest matches
pcl::console::parse_argument (argc, argv, "-k", k);
pcl::console::print_highlight ("Using "); pcl::console::print_value ("%d", k); pcl::console::print_info (" nearest neighbors.\n");
std::string kdtree_idx_file_name = "kdtree.idx";
std::string training_data_h5_file_name = "training_data.h5";
std::string training_data_list_file_name = "training_data.list";
std::vector<vfh_model> models;
flann::Matrix<int> k_indices;
flann::Matrix<float> k_distances;
flann::Matrix<float> data;
// Check if the data has already been saved to disk
if (!boost::filesystem::exists ("training_data.h5") || !boost::filesystem::exists ("training_data.list"))
{
pcl::console::print_error ("Could not find training data models files %s and %s!\n",
training_data_h5_file_name.c_str (), training_data_list_file_name.c_str ());
return (-1);
}
else
{
loadFileList (models, training_data_list_file_name);
flann::load_from_file (data, training_data_h5_file_name, "training_data");
pcl::console::print_highlight ("Training data found. Loaded %d VFH models from %s/%s.\n",
(int)data.rows, training_data_h5_file_name.c_str (), training_data_list_file_name.c_str ());
}
// Check if the tree index has already been saved to disk
if (!boost::filesystem::exists (kdtree_idx_file_name))
{
pcl::console::print_error ("Could not find kd-tree index in file %s!", kdtree_idx_file_name.c_str ());
return (-1);
}
else
{
flann::Index<flann::ChiSquareDistance<float> > index (data, flann::SavedIndexParams ("kdtree.idx"));
index.buildIndex ();
nearestKSearch (index, histogram, k, k_indices, k_distances);
}
// Output the results on screen
pcl::console::print_highlight ("The closest %d neighbors for %s are:\n", k, argv[pcd_indices[0]]);
for (int i = 0; i < k; ++i)
pcl::console::print_info (" %d - %s (%d) with a distance of: %f\n",
i, models.at (k_indices[0][i]).first.c_str (), k_indices[0][i], k_distances[0][i]);
// Load the results
pcl::visualization::PCLVisualizer p (argc, argv, "VFH Cluster Classifier");
int y_s = (int)floor (sqrt ((double)k));
int x_s = y_s + (int)ceil ((k / (double)y_s) - y_s);
double x_step = (double)(1 / (double)x_s);
double y_step = (double)(1 / (double)y_s);
pcl::console::print_highlight ("Preparing to load ");
pcl::console::print_value ("%d", k);
pcl::console::print_info (" files (");
pcl::console::print_value ("%d", x_s);
pcl::console::print_info ("x");
pcl::console::print_value ("%d", y_s);
pcl::console::print_info (" / ");
pcl::console::print_value ("%f", x_step);
pcl::console::print_info ("x");
pcl::console::print_value ("%f", y_step);
pcl::console::print_info (")\n");
int viewport = 0, l = 0, m = 0;
for (int i = 0; i < k; ++i)
{
std::string cloud_name = models.at (k_indices[0][i]).first;
boost::replace_last (cloud_name, "_vfh", "");
p.createViewPort (l * x_step, m * y_step, (l + 1) * x_step, (m + 1) * y_step, viewport);
l++;
if (l >= x_s)
{
l = 0;
m++;
}
pcl::PCLPointCloud2 cloud;
pcl::console::print_highlight (stderr, "Loading "); pcl::console::print_value (stderr, "%s ", cloud_name.c_str ());
if (pcl::io::loadPCDFile (cloud_name, cloud) == -1)
break;
// Convert from blob to PointCloud
pcl::PointCloud<pcl::PointXYZ> cloud_xyz;
pcl::fromPCLPointCloud2 (cloud, cloud_xyz);
if (cloud_xyz.points.size () == 0)
break;
pcl::console::print_info ("[done, ");
pcl::console::print_value ("%d", (int)cloud_xyz.points.size ());
pcl::console::print_info (" points]\n");
pcl::console::print_info ("Available dimensions: ");
pcl::console::print_value ("%s\n", pcl::getFieldsList (cloud).c_str ());
// Demean the cloud
Eigen::Vector4f centroid;
pcl::compute3DCentroid (cloud_xyz, centroid);
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_xyz_demean (new pcl::PointCloud<pcl::PointXYZ>);
pcl::demeanPointCloud<pcl::PointXYZ> (cloud_xyz, centroid, *cloud_xyz_demean);
// Add to renderer*
p.addPointCloud (cloud_xyz_demean, cloud_name, viewport);
// Check if the model found is within our inlier tolerance
std::stringstream ss;
ss << k_distances[0][i];
if (k_distances[0][i] > thresh)
{
p.addText (ss.str (), 20, 30, 1, 0, 0, ss.str (), viewport); // display the text with red
// Create a red line
pcl::PointXYZ min_p, max_p;
pcl::getMinMax3D (*cloud_xyz_demean, min_p, max_p);
std::stringstream line_name;
line_name << "line_" << i;
p.addLine (min_p, max_p, 1, 0, 0, line_name.str (), viewport);
p.setShapeRenderingProperties (pcl::visualization::PCL_VISUALIZER_LINE_WIDTH, 5, line_name.str (), viewport);
}
else
p.addText (ss.str (), 20, 30, 0, 1, 0, ss.str (), viewport);
// Increase the font size for the score*
p.setShapeRenderingProperties (pcl::visualization::PCL_VISUALIZER_FONT_SIZE, 18, ss.str (), viewport);
// Add the cluster name
p.addText (cloud_name, 20, 10, cloud_name, viewport);
}
// Add coordianate systems to all viewports
p.addCoordinateSystem (0.1, "global", 0);
p.spin ();
return (0);
}
|