File: nearest_neighbors.cpp

package info (click to toggle)
pcl 1.9.1%2Bdfsg1-10
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 141,836 kB
  • sloc: cpp: 521,679; xml: 28,792; ansic: 13,915; python: 538; lisp: 93; makefile: 77; sh: 27
file content (274 lines) | stat: -rw-r--r-- 9,601 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
#include <pcl/point_types.h>
#include <pcl/point_cloud.h>
#include <pcl/common/common.h>
#include <pcl/common/transforms.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/console/parse.h>
#include <pcl/console/print.h>
#include <pcl/io/pcd_io.h>
#include <iostream>
#include <flann/flann.h>
#include <flann/io/hdf5.h>
#include <boost/filesystem.hpp>

typedef std::pair<std::string, std::vector<float> > vfh_model;

/** \brief Loads an n-D histogram file as a VFH signature
  * \param path the input file name
  * \param vfh the resultant VFH model
  */
bool
loadHist (const boost::filesystem::path &path, vfh_model &vfh)
{
  int vfh_idx;
  // Load the file as a PCD
  try
  {
    pcl::PCLPointCloud2 cloud;
    int version;
    Eigen::Vector4f origin;
    Eigen::Quaternionf orientation;
    pcl::PCDReader r;
    int type; unsigned int idx;
    r.readHeader (path.string (), cloud, origin, orientation, version, type, idx);

    vfh_idx = pcl::getFieldIndex (cloud, "vfh");
    if (vfh_idx == -1)
      return (false);
    if ((int)cloud.width * cloud.height != 1)
      return (false);
  }
  catch (const pcl::InvalidConversionException&)
  {
    return (false);
  }

  // Treat the VFH signature as a single Point Cloud
  pcl::PointCloud <pcl::VFHSignature308> point;
  pcl::io::loadPCDFile (path.string (), point);
  vfh.second.resize (308);

  std::vector <pcl::PCLPointField> fields;
  getFieldIndex (point, "vfh", fields);

  for (size_t i = 0; i < fields[vfh_idx].count; ++i)
  {
    vfh.second[i] = point.points[0].histogram[i];
  }
  vfh.first = path.string ();
  return (true);
}


/** \brief Search for the closest k neighbors
  * \param index the tree
  * \param model the query model
  * \param k the number of neighbors to search for
  * \param indices the resultant neighbor indices
  * \param distances the resultant neighbor distances
  */
inline void
nearestKSearch (flann::Index<flann::ChiSquareDistance<float> > &index, const vfh_model &model, 
                int k, flann::Matrix<int> &indices, flann::Matrix<float> &distances)
{
  // Query point
  flann::Matrix<float> p = flann::Matrix<float>(new float[model.second.size ()], 1, model.second.size ());
  memcpy (&p.ptr ()[0], &model.second[0], p.cols * p.rows * sizeof (float));

  indices = flann::Matrix<int>(new int[k], 1, k);
  distances = flann::Matrix<float>(new float[k], 1, k);
  index.knnSearch (p, indices, distances, k, flann::SearchParams (512));
  delete[] p.ptr ();
}

/** \brief Load the list of file model names from an ASCII file
  * \param models the resultant list of model name
  * \param filename the input file name
  */
bool
loadFileList (std::vector<vfh_model> &models, const std::string &filename)
{
  ifstream fs;
  fs.open (filename.c_str ());
  if (!fs.is_open () || fs.fail ())
    return (false);

  std::string line;
  while (!fs.eof ())
  {
    getline (fs, line);
    if (line.empty ())
      continue;
    vfh_model m;
    m.first = line;
    models.push_back (m);
  }
  fs.close ();
  return (true);
}

int
main (int argc, char** argv)
{
  int k = 6;

  double thresh = DBL_MAX;     // No threshold, disabled by default

  if (argc < 2)
  {
    pcl::console::print_error 
      ("Need at least three parameters! Syntax is: %s <query_vfh_model.pcd> [options] {kdtree.idx} {training_data.h5} {training_data.list}\n", argv[0]);
    pcl::console::print_info ("    where [options] are:  -k      = number of nearest neighbors to search for in the tree (default: "); 
    pcl::console::print_value ("%d", k); pcl::console::print_info (")\n");
    pcl::console::print_info ("                          -thresh = maximum distance threshold for a model to be considered VALID (default: "); 
    pcl::console::print_value ("%f", thresh); pcl::console::print_info (")\n\n");
    return (-1);
  }

  std::string extension (".pcd");
  transform (extension.begin (), extension.end (), extension.begin (), (int(*)(int))tolower);

  // Load the test histogram
  std::vector<int> pcd_indices = pcl::console::parse_file_extension_argument (argc, argv, ".pcd");
  vfh_model histogram;
  if (!loadHist (argv[pcd_indices.at (0)], histogram))
  {
    pcl::console::print_error ("Cannot load test file %s\n", argv[pcd_indices.at (0)]);
    return (-1);
  }

  pcl::console::parse_argument (argc, argv, "-thresh", thresh);
  // Search for the k closest matches
  pcl::console::parse_argument (argc, argv, "-k", k);
  pcl::console::print_highlight ("Using "); pcl::console::print_value ("%d", k); pcl::console::print_info (" nearest neighbors.\n");

  std::string kdtree_idx_file_name = "kdtree.idx";
  std::string training_data_h5_file_name = "training_data.h5";
  std::string training_data_list_file_name = "training_data.list";

  std::vector<vfh_model> models;
  flann::Matrix<int> k_indices;
  flann::Matrix<float> k_distances;
  flann::Matrix<float> data;
  // Check if the data has already been saved to disk
  if (!boost::filesystem::exists ("training_data.h5") || !boost::filesystem::exists ("training_data.list"))
  {
    pcl::console::print_error ("Could not find training data models files %s and %s!\n", 
        training_data_h5_file_name.c_str (), training_data_list_file_name.c_str ());
    return (-1);
  }
  else
  {
    loadFileList (models, training_data_list_file_name);
    flann::load_from_file (data, training_data_h5_file_name, "training_data");
    pcl::console::print_highlight ("Training data found. Loaded %d VFH models from %s/%s.\n", 
        (int)data.rows, training_data_h5_file_name.c_str (), training_data_list_file_name.c_str ());
  }

  // Check if the tree index has already been saved to disk
  if (!boost::filesystem::exists (kdtree_idx_file_name))
  {
    pcl::console::print_error ("Could not find kd-tree index in file %s!", kdtree_idx_file_name.c_str ());
    return (-1);
  }
  else
  {
    flann::Index<flann::ChiSquareDistance<float> > index (data, flann::SavedIndexParams ("kdtree.idx"));
    index.buildIndex ();
    nearestKSearch (index, histogram, k, k_indices, k_distances);
  }

  // Output the results on screen
  pcl::console::print_highlight ("The closest %d neighbors for %s are:\n", k, argv[pcd_indices[0]]);
  for (int i = 0; i < k; ++i)
    pcl::console::print_info ("    %d - %s (%d) with a distance of: %f\n", 
        i, models.at (k_indices[0][i]).first.c_str (), k_indices[0][i], k_distances[0][i]);

  // Load the results
  pcl::visualization::PCLVisualizer p (argc, argv, "VFH Cluster Classifier");
  int y_s = (int)floor (sqrt ((double)k));
  int x_s = y_s + (int)ceil ((k / (double)y_s) - y_s);
  double x_step = (double)(1 / (double)x_s);
  double y_step = (double)(1 / (double)y_s);
  pcl::console::print_highlight ("Preparing to load "); 
  pcl::console::print_value ("%d", k); 
  pcl::console::print_info (" files ("); 
  pcl::console::print_value ("%d", x_s);    
  pcl::console::print_info ("x"); 
  pcl::console::print_value ("%d", y_s); 
  pcl::console::print_info (" / ");
  pcl::console::print_value ("%f", x_step); 
  pcl::console::print_info ("x"); 
  pcl::console::print_value ("%f", y_step); 
  pcl::console::print_info (")\n");

  int viewport = 0, l = 0, m = 0;
  for (int i = 0; i < k; ++i)
  {
    std::string cloud_name = models.at (k_indices[0][i]).first;
    boost::replace_last (cloud_name, "_vfh", "");

    p.createViewPort (l * x_step, m * y_step, (l + 1) * x_step, (m + 1) * y_step, viewport);
    l++;
    if (l >= x_s)
    {
      l = 0;
      m++;
    }

    pcl::PCLPointCloud2 cloud;
    pcl::console::print_highlight (stderr, "Loading "); pcl::console::print_value (stderr, "%s ", cloud_name.c_str ());
    if (pcl::io::loadPCDFile (cloud_name, cloud) == -1)
      break;

    // Convert from blob to PointCloud
    pcl::PointCloud<pcl::PointXYZ> cloud_xyz;
    pcl::fromPCLPointCloud2 (cloud, cloud_xyz);

    if (cloud_xyz.points.size () == 0)
      break;

    pcl::console::print_info ("[done, "); 
    pcl::console::print_value ("%d", (int)cloud_xyz.points.size ()); 
    pcl::console::print_info (" points]\n");
    pcl::console::print_info ("Available dimensions: "); 
    pcl::console::print_value ("%s\n", pcl::getFieldsList (cloud).c_str ());

    // Demean the cloud
    Eigen::Vector4f centroid;
    pcl::compute3DCentroid (cloud_xyz, centroid);
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_xyz_demean (new pcl::PointCloud<pcl::PointXYZ>);
    pcl::demeanPointCloud<pcl::PointXYZ> (cloud_xyz, centroid, *cloud_xyz_demean);
    // Add to renderer*
    p.addPointCloud (cloud_xyz_demean, cloud_name, viewport);
    
    // Check if the model found is within our inlier tolerance
    std::stringstream ss;
    ss << k_distances[0][i];
    if (k_distances[0][i] > thresh)
    {
      p.addText (ss.str (), 20, 30, 1, 0, 0, ss.str (), viewport);  // display the text with red

      // Create a red line
      pcl::PointXYZ min_p, max_p;
      pcl::getMinMax3D (*cloud_xyz_demean, min_p, max_p);
      std::stringstream line_name;
      line_name << "line_" << i;
      p.addLine (min_p, max_p, 1, 0, 0, line_name.str (), viewport);
      p.setShapeRenderingProperties (pcl::visualization::PCL_VISUALIZER_LINE_WIDTH, 5, line_name.str (), viewport);
    }
    else
      p.addText (ss.str (), 20, 30, 0, 1, 0, ss.str (), viewport);

    // Increase the font size for the score*
    p.setShapeRenderingProperties (pcl::visualization::PCL_VISUALIZER_FONT_SIZE, 18, ss.str (), viewport);

    // Add the cluster name
    p.addText (cloud_name, 20, 10, cloud_name, viewport);
  }
  // Add coordianate systems to all viewports
  p.addCoordinateSystem (0.1, "global", 0);

  p.spin ();
  return (0);
}