File: train_unary_classifier.cpp

package info (click to toggle)
pcl 1.9.1%2Bdfsg1-10
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 141,836 kB
  • sloc: cpp: 521,679; xml: 28,792; ansic: 13,915; python: 538; lisp: 93; makefile: 77; sh: 27
file content (276 lines) | stat: -rw-r--r-- 8,823 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
/*
 * Software License Agreement (BSD License)
 *
 *  Point Cloud Library (PCL) - www.pointclouds.org
 *  Copyright (c) 2011-2012, Willow Garage, Inc.
 *  All rights reserved.
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.
 *   * Neither the name of the copyright holder(s) nor the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *  POSSIBILITY OF SUCH DAMAGE.
 *
 * Author : Christian Potthast
 * Email  : potthast@usc.edu
 *
 */


#include <pcl/io/pcd_io.h>
#include <pcl/console/print.h>
#include <pcl/console/parse.h>
#include <pcl/console/time.h>

#include <pcl/segmentation/unary_classifier.h>

using namespace pcl;
using namespace pcl::io;
using namespace pcl::console;

unsigned int default_cluster_size = 10;
double default_normal_radius_search = 0.01;
double default_fpfh_radius_search = 0.05;

typedef PointXYZ PointT;
typedef PointCloud<PointT> CloudT;
typedef PointCloud<PointXYZRGBL> CloudLT;
typedef PointCloud<FPFHSignature33> FeatureT;

void
printHelp (int, char **argv)
{
  print_error ("Syntax is: %s input.pcd output.pcd <options>\n", argv[0]);
  print_info ("  where options are:\n");
  print_info ("                     -label = point cloud with labeled objects \n");
  print_info ("                     -k X = k-means cluster size (default: "); 
  print_value ("%d", static_cast<int> (default_cluster_size)); print_info (")\n");
  print_info ("                     -normal-search X = Normal radius search (default: "); 
  print_value ("%f", default_normal_radius_search); print_info (")\n");
  print_info ("                     -fpfh-search X = FPFH radius search (default: "); 
  print_value ("%f", default_fpfh_radius_search); print_info (")\n");
}

bool
loadCloud (const std::string &filename, CloudT::Ptr &cloud)
{
  TicToc tt;
  print_highlight ("Loading "); print_value ("%s ", filename.c_str ());

  tt.tic ();
  if (loadPCDFile (filename, *cloud) < 0)
    return (false);
  print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", cloud->width * cloud->height); print_info (" points]\n");

  return (true);
}

bool
loadCloud (const std::string &filename, CloudLT::Ptr &cloud)
{
  TicToc tt;
  print_highlight ("Loading "); print_value ("%s ", filename.c_str ());

  tt.tic ();
  if (loadPCDFile (filename, *cloud) < 0)
    return (false);
  print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", cloud->width * cloud->height); print_info (" points]\n");

  return (true);
}

void
compute (const CloudT::Ptr &input, std::vector<FeatureT, Eigen::aligned_allocator<FeatureT> > &output,
         unsigned int k,
         float normal_radius_search,
         float fpfh_radius_search,
         bool label)
{
  TicToc tt;
  tt.tic ();
  
  print_highlight ("Computing ");

  UnaryClassifier<PointT> classifier;
  classifier.setInputCloud (input);
  classifier.setClusterSize (k);
  classifier.setNormalRadiusSearch (normal_radius_search);
  classifier.setFPFHRadiusSearch (fpfh_radius_search);
  classifier.setLabelField (label);

  FeatureT::Ptr feature (new FeatureT);
  classifier.train (feature);  
  output.push_back (*feature);

  print_info ("[done, "); 
  print_value ("%g", tt.toc ()); 
  print_info (" ms : "); print_value ("%d", feature->width * feature->height); 
  print_info (" features]\n");
}

void
compute (const CloudLT::Ptr &input, std::vector<FeatureT, Eigen::aligned_allocator<FeatureT> > &output,
         unsigned int k,
         float normal_radius_search,
         float fpfh_radius_search,
         bool label)
{
  TicToc tt;
  tt.tic ();

  UnaryClassifier<PointXYZRGBL> classifier;
  classifier.setInputCloud (input);
  classifier.setClusterSize (k);
  classifier.setNormalRadiusSearch (normal_radius_search);
  classifier.setFPFHRadiusSearch (fpfh_radius_search);
  classifier.setLabelField (label);

  classifier.trainWithLabel (output);

  print_highlight ("Computing ");
  print_info ("[done, "); 
  print_value ("%g", tt.toc ()); 
  print_info (" ms , "); 
  print_value ("%d", output.size ()); 
  print_info (" objects : "); 
  print_value ("%d", output[0].width * output[0].height); 
  print_info (" features]\n");
}

void
saveCloud (const std::string &filename, std::vector<FeatureT, Eigen::aligned_allocator<FeatureT> > &output)
{
  TicToc tt;
  tt.tic ();

  if (output.size () == 1)
  {
    print_highlight ("Saving "); print_value ("%s ", filename.c_str ());
    PCDWriter w;
    w.write (filename, output[0]);

    print_info ("[done, "); 
    print_value ("%g", tt.toc ()); 
    print_info (" ms : "); print_value ("%d", output[0].width * output[0].height); 
    print_info (" features]\n");    
  }
  else
  {
    for (size_t i = 0; i < output.size (); i++)
    {
      std::string fname (filename);
      std::string s = boost::lexical_cast<std::string>( static_cast<int> (i) );
      fname = fname + "_" + s + ".pcd";

      print_highlight ("Saving "); print_value ("%s ", fname.c_str ());

      PCDWriter w;
      w.write (fname, output[i]);

      print_info ("[done, "); 
      print_value ("%g", tt.toc ()); 
      print_info (" ms , "); 
      print_value ("%d", i); 
      print_info (" objects : "); 
      print_value ("%d", output[i].width * output[i].height); 
      print_info (" features]\n");
    }
  }
}

/* ---[ */
int
main (int argc, char** argv)
{
  print_info ("Train unary classifier using FPFH. For more information, use: %s -h\n", argv[0]);

  if (argc < 3)
  {
    printHelp (argc, argv);
    return (-1);
  }

  bool label = (find_argument (argc, argv, "-label") != -1);

  // Parse the command line arguments for .pcd files
  std::vector<int> p_file_indices;
  p_file_indices = parse_file_extension_argument (argc, argv, ".pcd");
  if (!label)
  {
    if (p_file_indices.size () != 2)
    {
      print_error ("Need one input PCD file and one output PCD file to continue.\n");
      return (-1);
    }
  }
  else
  {
    if (p_file_indices.size () != 1)
    {
      print_error ("Need one input PCD file and one output file name to continue.\n");
      return (-1);
    }    
  }
  
  // parse optional input arguments from the command line
  unsigned int k = default_cluster_size;
  float normal_radius_search = static_cast<float> (default_normal_radius_search);
  float fpfh_radius_search = static_cast<float> (default_fpfh_radius_search);

  parse_argument (argc, argv, "-k", k);
  parse_argument (argc, argv, "-normal-radius-search", normal_radius_search);
  parse_argument (argc, argv, "-fpfh-radius-search", fpfh_radius_search);

  print_info ("\nlabel: %d \n", label);
  print_info ("k-means cluster size: %d \n", k);
  print_info ("normal-radius-search: %f \n", normal_radius_search);
  print_info ("fpfh-radius-search: %f \n\n", fpfh_radius_search);

  std::vector<FeatureT, Eigen::aligned_allocator<FeatureT> > features;
  //FeatureT::Ptr feature (new FeatureT);
  if (!label)
  {
    // Load the input file
    CloudT::Ptr cloud (new CloudT);
    if (!loadCloud (argv[p_file_indices[0]], cloud)) 
      return (-1);
    
    // compute the features
    compute (cloud, features, k, normal_radius_search, fpfh_radius_search, label);
  }
  else
  {
    // Load the input file  
    CloudLT::Ptr cloudL (new CloudLT);
    if (!loadCloud (argv[p_file_indices[0]], cloudL)) 
      return (-1);

    // compute the features
    compute (cloudL, features, k, normal_radius_search, fpfh_radius_search, label);
  }

  // Save features to file
  saveCloud (argv[2], features);
}