1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
|
/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2011-2012, Willow Garage, Inc.
* Copyright (c) 2012-, Open Perception, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*
*/
#include <pcl/PCLPointCloud2.h>
#include <pcl/conversions.h>
#include <pcl/io/pcd_io.h>
#include <pcl/console/print.h>
#include <pcl/console/parse.h>
#include <pcl/console/time.h>
#include <pcl/common/transforms.h>
#include <cmath>
using namespace pcl;
using namespace pcl::io;
using namespace pcl::console;
void
printHelp (int, char **argv)
{
print_error ("Syntax is: %s input.pcd output.pcd <options>\n", argv[0]);
print_info (" where options are:\n");
print_info (" -trans dx,dy,dz = the translation (default: ");
print_value ("%0.1f, %0.1f, %0.1f", 0, 0, 0); print_info (")\n");
print_info (" -quat x,y,z,w = rotation as quaternion\n");
print_info (" -axisangle ax,ay,az,theta = rotation in axis-angle form\n");
print_info (" -scale x,y,z = scale each dimension with these values\n");
print_info (" -matrix v1,v2,...,v8,v9 = a 3x3 affine transform\n");
print_info (" -matrix v1,v2,...,v15,v16 = a 4x4 transformation matrix\n");
print_info (" Note: If a rotation is not specified, it will default to no rotation.\n");
print_info (" If redundant or conflicting transforms are specified, then:\n");
print_info (" -axisangle will override -quat\n");
print_info (" -matrix (3x3) will take override -axisangle and -quat\n");
print_info (" -matrix (4x4) will take override all other arguments\n");
}
void
printElapsedTimeAndNumberOfPoints (double t, int w, int h = 1)
{
print_info ("[done, "); print_value ("%g", t); print_info (" ms : ");
print_value ("%d", w*h); print_info (" points]\n");
}
bool
loadCloud (const std::string &filename, pcl::PCLPointCloud2 &cloud)
{
TicToc tt;
print_highlight ("Loading "); print_value ("%s ", filename.c_str ());
tt.tic ();
if (loadPCDFile (filename, cloud) < 0)
return (false);
printElapsedTimeAndNumberOfPoints (tt.toc (), cloud.width, cloud.height);
print_info ("Available dimensions: "); print_value ("%s\n", pcl::getFieldsList (cloud).c_str ());
return (true);
}
template <typename PointT> void
transformPointCloudHelper (PointCloud<PointT> & input, PointCloud<PointT> & output,
Eigen::Matrix4f &tform)
{
transformPointCloud (input, output, tform);
}
template <> void
transformPointCloudHelper (PointCloud<PointNormal> & input, PointCloud<PointNormal> & output,
Eigen::Matrix4f &tform)
{
transformPointCloudWithNormals (input, output, tform);
}
template <> void
transformPointCloudHelper<PointXYZRGBNormal> (PointCloud<PointXYZRGBNormal> & input,
PointCloud<PointXYZRGBNormal> & output,
Eigen::Matrix4f &tform)
{
transformPointCloudWithNormals (input, output, tform);
}
template <typename PointT> void
transformPointCloud2AsType (const pcl::PCLPointCloud2 &input, pcl::PCLPointCloud2 &output,
Eigen::Matrix4f &tform)
{
PointCloud<PointT> cloud;
fromPCLPointCloud2 (input, cloud);
transformPointCloudHelper (cloud, cloud, tform);
toPCLPointCloud2 (cloud, output);
}
void
transformPointCloud2 (const pcl::PCLPointCloud2 &input, pcl::PCLPointCloud2 &output,
Eigen::Matrix4f &tform)
{
// Check for 'rgb' and 'normals' fields
bool has_rgb = false;
bool has_normals = false;
for (size_t i = 0; i < input.fields.size (); ++i)
{
if (input.fields[i].name.find("rgb") != std::string::npos)
has_rgb = true;
if (input.fields[i].name == "normal_x")
has_normals = true;
}
// Handle the following four point types differently: PointXYZ, PointXYZRGB, PointNormal, PointXYZRGBNormal
if (!has_rgb && !has_normals)
transformPointCloud2AsType<PointXYZ> (input, output, tform);
else if (has_rgb && !has_normals)
transformPointCloud2AsType<PointXYZRGB> (input, output, tform);
else if (!has_rgb && has_normals)
transformPointCloud2AsType<PointNormal> (input, output, tform);
else // (has_rgb && has_normals)
transformPointCloud2AsType<PointXYZRGBNormal> (input, output, tform);
}
void
compute (const pcl::PCLPointCloud2::ConstPtr &input, pcl::PCLPointCloud2 &output,
Eigen::Matrix4f &tform)
{
TicToc tt;
tt.tic ();
print_highlight ("Transforming ");
transformPointCloud2 (*input, output, tform);
printElapsedTimeAndNumberOfPoints (tt.toc (), output.width, output.height);
}
void
saveCloud (const std::string &filename, const pcl::PCLPointCloud2 &output)
{
TicToc tt;
tt.tic ();
print_highlight ("Saving "); print_value ("%s ", filename.c_str ());
PCDWriter w;
w.writeBinaryCompressed (filename, output);
printElapsedTimeAndNumberOfPoints (tt.toc (), output.width, output.height);
}
template <typename T> void
multiply (pcl::PCLPointCloud2 &cloud, int field_offset, double multiplier)
{
T val;
memcpy (&val, &cloud.data[field_offset], sizeof (T));
val = static_cast<T> (val * static_cast<T> (multiplier));
memcpy (&cloud.data[field_offset], &val, sizeof (T));
}
void
scaleInPlace (pcl::PCLPointCloud2 &cloud, double* multiplier)
{
// Obtain the x, y, and z indices
int x_idx = pcl::getFieldIndex (cloud, "x");
int y_idx = pcl::getFieldIndex (cloud, "y");
int z_idx = pcl::getFieldIndex (cloud, "z");
Eigen::Array3i xyz_offset (cloud.fields[x_idx].offset, cloud.fields[y_idx].offset, cloud.fields[z_idx].offset);
for (uint32_t cp = 0; cp < cloud.width * cloud.height; ++cp)
{
// Assume all 3 fields are the same (XYZ)
assert ((cloud.fields[x_idx].datatype == cloud.fields[y_idx].datatype));
assert ((cloud.fields[x_idx].datatype == cloud.fields[z_idx].datatype));
switch (cloud.fields[x_idx].datatype)
{
case pcl::PCLPointField::INT8:
for (int i = 0; i < 3; ++i) multiply<int8_t> (cloud, xyz_offset[i], multiplier[i]);
break;
case pcl::PCLPointField::UINT8:
for (int i = 0; i < 3; ++i) multiply<uint8_t> (cloud, xyz_offset[i], multiplier[i]);
break;
case pcl::PCLPointField::INT16:
for (int i = 0; i < 3; ++i) multiply<int16_t> (cloud, xyz_offset[i], multiplier[i]);
break;
case pcl::PCLPointField::UINT16:
for (int i = 0; i < 3; ++i) multiply<uint16_t> (cloud, xyz_offset[i], multiplier[i]);
break;
case pcl::PCLPointField::INT32:
for (int i = 0; i < 3; ++i) multiply<int32_t> (cloud, xyz_offset[i], multiplier[i]);
break;
case pcl::PCLPointField::UINT32:
for (int i = 0; i < 3; ++i) multiply<uint32_t> (cloud, xyz_offset[i], multiplier[i]);
break;
case pcl::PCLPointField::FLOAT32:
for (int i = 0; i < 3; ++i) multiply<float> (cloud, xyz_offset[i], multiplier[i]);
break;
case pcl::PCLPointField::FLOAT64:
for (int i = 0; i < 3; ++i) multiply<double> (cloud, xyz_offset[i], multiplier[i]);
break;
}
xyz_offset += cloud.point_step;
}
}
/* ---[ */
int
main (int argc, char** argv)
{
print_info ("Transform a cloud. For more information, use: %s -h\n", argv[0]);
bool help = false;
parse_argument (argc, argv, "-h", help);
if (argc < 3 || help)
{
printHelp (argc, argv);
return (-1);
}
// Parse the command line arguments for .pcd files
std::vector<int> p_file_indices;
p_file_indices = parse_file_extension_argument (argc, argv, ".pcd");
if (p_file_indices.size () != 2)
{
print_error ("Need one input PCD file and one output PCD file to continue.\n");
return (-1);
}
// Initialize the transformation matrix
Eigen::Matrix4f tform;
tform.setIdentity ();
// Command line parsing
float dx, dy, dz;
std::vector<float> values;
if (parse_3x_arguments (argc, argv, "-trans", dx, dy, dz) > -1)
{
tform (0, 3) = dx;
tform (1, 3) = dy;
tform (2, 3) = dz;
}
if (parse_x_arguments (argc, argv, "-quat", values) > -1)
{
if (values.size () == 4)
{
const float& x = values[0];
const float& y = values[1];
const float& z = values[2];
const float& w = values[3];
tform.topLeftCorner (3, 3) = Eigen::Matrix3f (Eigen::Quaternionf (w, x, y, z));
}
else
{
print_error ("Wrong number of values given (%lu): ", values.size ());
print_error ("The quaternion specified with -quat must contain 4 elements (w,x,y,z).\n");
}
}
if (parse_x_arguments (argc, argv, "-axisangle", values) > -1)
{
if (values.size () == 4)
{
const float& ax = values[0];
const float& ay = values[1];
const float& az = values[2];
const float& theta = values[3];
tform.topLeftCorner (3, 3) = Eigen::Matrix3f (Eigen::AngleAxisf (theta, Eigen::Vector3f (ax, ay, az)));
}
else
{
print_error ("Wrong number of values given (%lu): ", values.size ());
print_error ("The rotation specified with -axisangle must contain 4 elements (ax,ay,az,theta).\n");
}
}
if (parse_x_arguments (argc, argv, "-matrix", values) > -1)
{
if (values.size () == 9 || values.size () == 16)
{
int n = values.size () == 9 ? 3 : 4;
for (int r = 0; r < n; ++r)
for (int c = 0; c < n; ++c)
tform (r, c) = values[n*r+c];
}
else
{
print_error ("Wrong number of values given (%lu): ", values.size ());
print_error ("The transformation specified with -matrix must be 3x3 (9) or 4x4 (16).\n");
}
}
// Load the first file
pcl::PCLPointCloud2::Ptr cloud (new pcl::PCLPointCloud2);
if (!loadCloud (argv[p_file_indices[0]], *cloud))
return (-1);
// Apply the transform
pcl::PCLPointCloud2 output;
compute (cloud, output, tform);
// Check if a scaling parameter has been given
double divider[3];
if (parse_3x_arguments (argc, argv, "-scale", divider[0], divider[1], divider[2]) > -1)
{
print_highlight ("Scaling XYZ data with the following values: %f, %f, %f\n", divider[0], divider[1], divider[2]);
scaleInPlace (output, divider);
}
// Save into the second file
saveCloud (argv[p_file_indices[1]], output);
}
|