1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!--
(c) Copyright 2000-2004 Silicon Graphics Inc. All rights reserved.
Permission is granted to copy, distribute, and/or modify this document
under the terms of the Creative Commons Attribution-Share Alike, Version
3.0 or any later version published by the Creative Commons Corp. A copy
of the license is available at
https://creativecommons.org/licenses/by-sa/3.0/us/ .
-->
<HTML>
<HEAD>
<meta http-equiv="content-type" content="text/html; charset=utf-8">
<meta http-equiv="content-style-type" content="text/css">
<link href="pcpdoc.css" rel="stylesheet" type="text/css">
<link href="images/pcp.ico" rel="icon" type="image/ico">
<TITLE>How to understand disk performance</TITLE>
</HEAD>
<BODY LANG="en-AU" TEXT="#000060" DIR="LTR">
<TABLE WIDTH="100%" BORDER=0 CELLPADDING=0 CELLSPACING=0 STYLE="page-break-before: always">
<TR> <TD WIDTH=64 HEIGHT=64><FONT COLOR="#000080"><A HREF="https://pcp.io/"><IMG SRC="images/pcpicon.png" ALT="pmcharticon" ALIGN=TOP WIDTH=64 HEIGHT=64 BORDER=0></A></FONT></TD>
<TD WIDTH=1><P> </P></TD>
<TD WIDTH=500><P ALIGN=LEFT><A HREF="index.html"><FONT COLOR="#cc0000">Home</FONT></A> · <A HREF="lab.pmchart.html"><FONT COLOR="#cc0000">Charts</FONT></A> · <A HREF="timecontrol.html"><FONT COLOR="#cc0000">Time Control</FONT></A></P></TD>
</TR>
</TABLE>
<H1 ALIGN=CENTER STYLE="margin-top: 0.48cm; margin-bottom: 0.32cm"><FONT SIZE=7>How to understand measures of disk performance</FONT></H1>
<TABLE WIDTH="15%" BORDER=0 CELLPADDING=5 CELLSPACING=10 ALIGN=RIGHT>
<TR><TD BGCOLOR="#e2e2e2"><PRE><IMG SRC="images/system-search.png" ALT="" WIDTH=16 HEIGHT=16 BORDER=0> <I>Tools</I><BR>
pmchart
sar
</PRE></TD></TR>
</TABLE>
<P>This chapter of the Performance Co-Pilot tutorial provides some hints
on how to interpret and understand the various measures of disk
performance.</P>
<P><BR></P>
<TABLE WIDTH="100%" BORDER=0 CELLPADDING=0 CELLSPACING=0 BGCOLOR="#e2e2e2">
<TR><TD WIDTH="100%" BGCOLOR="#081c59"><P ALIGN=LEFT><FONT SIZE=5 COLOR="#ffffff"><B>Reconciling sar -d and PCP disk performance metrics</B></FONT></P></TD></TR>
</TABLE>
<P>
Both <I>sar</I> and Performance Co-Pilot (PCP) use a common collection
of disk performance instrumentation from the block layer in the kernel,
however the disk performance metrics provided by <I>sar</I> and PCP
differ in their derivation and semantics. This document
is an attempt to explain these differences. </P>
<P>
It is convenient to define the ``response time'' to be the time to
complete a disk operation as the sum of the time spent:</P>
<UL>
<LI>
entering the read() or write() system call and set up for an I/O
operation (time here is CPU bound and is assumed to be negligible per
I/O)
<LI>
in a queue of pending requests waiting to be handed to the device
controller (the ``queue time'')
<LI>
the time between the request being handed to the device controller and
the end of transfer interrupt (the ``(device) service time''),
typically composed of delays due to request scheduling at the
controller, bus arbitration, possible seek time, rotational latency,
data transfer, etc.
<LI>
time to process the end of transfer interrupt, housekeeping at the end
of an I/O operation and return from the read() or write() system call
(time here is CPU bound and also assumed to be negligible per I/O)
</UL>
<P>
Note that while the CPU time per I/O is assumed to be small in
relationship to the times involving operations at the device level,
when the system-wide I/O rate is high (and it could be tens of
thousands of I/Os per second on a very large configuration), the <B>aggregate</B>
CPU demand to support this I/O activity may be significant.</P>
<P>
The kernel agents for PCP export the following metrics for each disk spindle:</P>
<TABLE BORDER="1">
<CAPTION ALIGN="BOTTOM"><B>Table 1: Raw PCP disk metrics</B></CAPTION>
<TR VALIGN="TOP">
<TH>Metric</TH>
<TH>Units</TH>
<TH>Semantics</TH>
</TR>
<TR VALIGN="TOP">
<TD><I><TT>disk.dev.read</TT></I></TD>
<TD>number</TD>
<TD>running total of <B>read</B> I/O requests since boot time</TD>
</TR>
<TR VALIGN="TOP">
<TD><I><TT>disk.dev.write</TT></I></TD>
<TD>number</TD>
<TD>running total of <B>write</B> I/O requests since boot time</TD>
</TR>
<TR VALIGN="TOP">
<TD><I><TT>disk.dev.total</TT></I></TD>
<TD>number</TD>
<TD>running total of I/O requests since boot time, equals <I><TT>disk.dev.read</TT></I>
+ <I><TT>disk.dev.write</TT></I></TD>
</TR>
<TR VALIGN="TOP">
<TD><I><TT>disk.dev.blkread</TT></I></TD>
<TD>number</TD>
<TD>running total of data <B>read</B> since boot time in units
of 512-byte blocks</TD>
</TR>
<TR VALIGN="TOP">
<TD><I><TT>disk.dev.blkwrite</TT></I></TD>
<TD>number</TD>
<TD>running total of data <B>written</B> since boot time in
units of 512-byte blocks</TD>
</TR>
<TR VALIGN="TOP">
<TD><I><TT>disk.dev.blktotal</TT></I></TD>
<TD>number</TD>
<TD>running total of data <B>read</B> or <B>written</B> since
boot time in units of 512-bytes, equals <I><TT>disk.dev.blkread
+ disk.dev.blkwrite</TT></I></TD>
</TR>
<TR>
<TD><I><TT>disk.dev.read_bytes</TT></I></TD>
<TD>Kbytes</TD>
<TD>running total of data <B>read</B> since boot time in units
of Kbytes</TD>
</TR>
<TR>
<TD><I><TT>disk.dev.write_bytes</TT></I></TD>
<TD>Kbytes</TD>
<TD>running total of data <B>written</B> since boot time in
units of Kbytes</TD>
</TR>
<TR>
<TD><I><TT>disk.dev.bytes</TT></I></TD>
<TD>Kbytes</TD>
<TD>running total of data <B>read</B> or <B>written</B> since
boot time in units of Kbytes, equals <I><TT>disk.dev.read_bytes
+ disk.dev.write_bytes</TT></I></TD>
</TR>
<TR VALIGN="TOP">
<TD><I><TT>disk.dev.active</TT></I></TD>
<TD>milliseconds</TD>
<TD>running total (milliseconds since boot time) of time this
device has been busy servicing at least one I/O request</TD>
</TR>
<TR VALIGN="TOP">
<TD><I><TT>disk.dev.response</TT></I></TD>
<TD>milliseconds</TD>
<TD>running total (milliseconds since boot time) of the
response time for all completed I/O requests</TD>
</TR>
</TABLE>
<P>
These metrics are all "counters" so when displayed with most
PCP tools, they are sampled periodically and the differences between
consecutive values converted to rates or time utilization over the
sample interval as follows:</P>
<TABLE BORDER="1">
<CAPTION ALIGN="BOTTOM"><B>Table 2: PCP disk metrics as reported by
most PCP tools</B></CAPTION>
<TR VALIGN="TOP">
<TH>Metric</TH>
<TH>Units</TH>
<TH>Semantics</TH>
</TR>
<TR VALIGN="TOP">
<TD><I><TT>disk.dev.read</TT></I></TD>
<TD>number per second</TD>
<TD><B>read</B> I/O requests per second (or <B>read</B> IOPS)</TD>
</TR>
<TR VALIGN="TOP">
<TD><I><TT>disk.dev.write</TT></I></TD>
<TD>number per second</TD>
<TD><B>write</B> I/O requests per second (or <B>write</B> IOPS)</TD>
</TR>
<TR VALIGN="TOP">
<TD><I><TT>disk.dev.total</TT></I></TD>
<TD>number per second</TD>
<TD>I/O requests per second (or IOPS)</TD>
</TR>
<TR VALIGN="TOP">
<TD><I><TT>disk.dev.blkread</TT></I></TD>
<TD>number per second</TD>
<TD>2 * (Kbytes <B>read</B> per second)</TD>
</TR>
<TR VALIGN="TOP">
<TD><I><TT>disk.dev.blkwrite</TT></I></TD>
<TD>number per second</TD>
<TD>2 * (Kbytes <B>written </B>per second)</TD>
</TR>
<TR VALIGN="TOP">
<TD><I><TT>disk.dev.blktotal</TT></I></TD>
<TD>number per second</TD>
<TD>2 * (Kbytes <B>read</B> or <B>written</B> per second)</TD>
</TR>
<TR>
<TD><I><TT>disk.dev.read_bytes</TT></I></TD>
<TD>Kbytes per second</TD>
<TD>Kbytes <B>read</B> per second</TD>
</TR>
<TR>
<TD><I><TT>disk.dev.write_bytes</TT></I></TD>
<TD>Kbytes per second</TD>
<TD>Kbytes <B>written </B>per second</TD>
</TR>
<TR>
<TD><I><TT>disk.dev.bytes</TT></I></TD>
<TD>Kbytes per second</TD>
<TD>Kbytes <B>read</B> or <B>written</B> per second</TD>
</TR>
<TR VALIGN="TOP">
<TD><I><TT>disk.dev.active</TT></I></TD>
<TD>time utilization</TD>
<TD>fraction of time device was "busy" over the
sample interval (either in the range 0.0-1.0 or expressed as a
percentage in the rance 0-100); in this context "busy" means
servicing one or more I/O requests</TD>
</TR>
<TR VALIGN="TOP">
<TD><I><TT>disk.dev.response</TT></I></TD>
<TD>time utilization</TD>
<TD>time average of the response time over the interval; this
is a slightly strange metric in that values larger than 1.0 (or 100%)
imply either device saturation, or controller saturation or a very
``bursty'' request arrival pattern -- in isolation there is <B>no
sensible interpretation</B> of the rate converted value
this metric </TD>
</TR>
</TABLE>
<P>
The <I>sar</I> metrics <I><TT>avque</TT></I>, <I><TT>avwait</TT></I>
and <I><TT>avserv</TT></I> are subject to widespread
misinterpretation, and so warrant some special explanation. They may be
understood with the aid of a simple illustrative example. Consider the
following snapshot of disk activity in which the response time has been
simplified to be a multiple of 10 milliseconds for each I/O operation
over a 100 millisecond sample interval (this is an unlikely
simplification, but makes the arithmetic easier).</P>
<CENTER><P ALIGN="CENTER">
<IMG SRC="images/sar-d.png" ALT="" WIDTH="529" HEIGHT="152"></P>
</CENTER><P>
Each green block represents a 4 Kbyte read. Each red block represents a
16Kbyte write.</P>
<DL>
<DT>
<I><TT>avque</TT></I>
<DD>
<P>
The <B><I>stochastic</I></B> <B><I>average</I></B> of the
"queue" length sampled just before each I/O is complete,
where ``queue'' here includes those requests in the queue <B>and</B>
those being serviced by the device controller. Unfortunately the <B><I>stochastic</I></B>
<B><I>average</I></B> of a queue length is not the same as the
more commonly understood <B><I>temporal</I></B> or <B><I>time</I></B>
<B><I>average</I></B> of a queue length. </P>
<P>
In the table below, <B>R</B> is the contribution to the sum of the
response times, <B>Qs</B> is the contribution to the sum of the
queue length used to compute the <B><I>stochastic</I></B> average
and <B>Qt</B> is the contribution to the sum of the queue length
× time used to compute the <B><I>temporal</I></B> average. </P>
</DL>
<CENTER>
<TABLE BORDER="1">
<TR>
<TH ALIGN="CENTER">
<B>Time</B><BR>
(msec)</TH>
<TH ALIGN="CENTER"><B>Event</B></TH>
<TH ALIGN="CENTER"><B>R</B><BR>
(msec)</TH>
<TH ALIGN="CENTER"><B>Qs</B></TH>
<TH ALIGN="CENTER"><B>Qt</B><BR>
(msec)</TH>
</TR>
<TR>
<TD ALIGN="RIGHT">300</TD>
<TD>Start I/O #1 (write)</TD>
<TD ALIGN="RIGHT"> </TD>
<TD ALIGN="RIGHT"> </TD>
<TD ALIGN="RIGHT"> </TD>
</TR>
<TR>
<TD ALIGN="RIGHT">320</TD>
<TD>End I/O #1</TD>
<TD ALIGN="RIGHT">20</TD>
<TD ALIGN="RIGHT">1</TD>
<TD ALIGN="RIGHT">1×20</TD>
</TR>
<TR>
<TD ALIGN="RIGHT">320</TD>
<TD>Start I/O #2 (read)</TD>
<TD ALIGN="RIGHT"> </TD>
<TD ALIGN="RIGHT"> </TD>
<TD ALIGN="RIGHT"> </TD>
</TR>
<TR>
<TD ALIGN="RIGHT">320</TD>
<TD>Start I/O #3 (read)</TD>
<TD ALIGN="RIGHT"> </TD>
<TD ALIGN="RIGHT"> </TD>
<TD ALIGN="RIGHT"> </TD>
</TR>
<TR>
<TD ALIGN="RIGHT">330</TD>
<TD>End I/O #2</TD>
<TD ALIGN="RIGHT">10</TD>
<TD ALIGN="RIGHT">2</TD>
<TD ALIGN="RIGHT">2×10</TD>
</TR>
<TR>
<TD ALIGN="RIGHT">340</TD>
<TD>End I/O #3</TD>
<TD ALIGN="RIGHT">20</TD>
<TD ALIGN="RIGHT">1</TD>
<TD ALIGN="RIGHT">1×10</TD>
</TR>
<TR>
<TD ALIGN="RIGHT">360</TD>
<TD>Start I/O #4 (write)</TD>
<TD ALIGN="RIGHT"> </TD>
<TD ALIGN="RIGHT"> </TD>
<TD ALIGN="RIGHT"> </TD>
</TR>
<TR>
<TD ALIGN="RIGHT">360</TD>
<TD>Start I/O #5 (read)</TD>
<TD ALIGN="RIGHT"> </TD>
<TD ALIGN="RIGHT"> </TD>
<TD ALIGN="RIGHT"> </TD>
</TR>
<TR>
<TD ALIGN="RIGHT">360</TD>
<TD>Start I/O #6 (read)</TD>
<TD ALIGN="RIGHT"> </TD>
<TD ALIGN="RIGHT"> </TD>
<TD ALIGN="RIGHT"> </TD>
</TR>
<TR>
<TD ALIGN="RIGHT">370</TD>
<TD>End I/O #6</TD>
<TD ALIGN="RIGHT">10</TD>
<TD ALIGN="RIGHT">3</TD>
<TD ALIGN="RIGHT">3×10</TD>
</TR>
<TR>
<TD ALIGN="RIGHT">380</TD>
<TD>End I/O #5</TD>
<TD ALIGN="RIGHT">20</TD>
<TD ALIGN="RIGHT">2</TD>
<TD ALIGN="RIGHT">2×10</TD>
</TR>
<TR>
<TD ALIGN="RIGHT">400</TD>
<TD>End I/O #4</TD>
<TD ALIGN="RIGHT">40</TD>
<TD ALIGN="RIGHT">1</TD>
<TD ALIGN="RIGHT">1×20</TD>
</TR>
</TABLE>
</CENTER>
<DL>
<DT>
<DD>
<P>
The (stochastic) average response time is sum(<B>R</B>) / 6 = 120 /
6 = 20 msec.</P>
<P>
The <B><I>stochastic</I></B> <B><I>average</I></B> of the queue
length is sum(<B>Qs</B>) / 6 = 10 / 6 = 1.67.</P>
<P>
The <B><I>temporal </I></B> <B><I>average</I></B> of the queue
length is sum(<B>Qt</B>) / 100 = 120 / 100 = 1.20.</P>
<P>
Even in this simple example, the two methods for computing the "average"
queue length produce different answers. As the inter-arrival rate
for I/O requests becomes more variable, and particularly when many I/O
requests are issued in a short period of time followed by a period of
quiescence, the two methods produce radically different results.</P>
<P>
For example if the idle period in the example above was 420 msec rather
than 20 msec, then the <B><I>stochastic</I></B> <B><I>average</I></B>
would remain unchanged at 1.67, but the <B><I>temporal average</I></B>
would fall to 120/500 = 0.24 ... given that this disk is now <B>idle</B>
for 420/500 = 84% of the time one can see how misleading the <B><I>stochastic</I></B>
<B><I>average</I></B> can be. Unfortunately many disks are subject
to exactly this pattern of short bursts when many I/Os are enqueued,
followed by long periods of comparative calm (consider flushing dirty
blocks by <I>bdflush</I> in IRIX or the DBWR process in Oracle).
Under these circumstances, <I><TT>avque</TT> </I>as reported by <I>sar</I>
can be very misleading.</P>
<DT>
<I><TT>avserv</TT></I>
<DD>
<P>
Because multiple operations may be processed by the controller at the
same time, and the order of completion is not necessarily the same as
the order of dispatch, the notion of individual service time is
difficult (if not impossible) to measure. Rather, <I>sar</I>
approximates using the total time the disk was busy processing at
least one request divided by the number of completed requests.</P>
<P>
In the example above this translates to busy for 80 msec, in which time
6 I/Os were completed, so the average service time is 13.33 msec.</P>
<DT>
<I><TT>avwait</TT></I>
<DD>
<P>
For reasons similar to those applying to <I><TT>avserv</TT></I> the
average time spent waiting cannot be split between waiting in the
queue of requests to be sent to the controller and waiting at the
controller while some other concurrent request is being processed. So <I>sar</I>
computes the total time spent waiting as the total response time minus
the total service time, and then averages over the number of completed
requests.</P>
<P>
In the example above this translates to a total waiting time of 120
msec - 80 msec, in which time 6 I/Os were completed, so the average
waiting time is 6.67 msec.</P>
</DL>
<P>
When run with a <B>-d</B> option, <I>sar</I> reports the following for
each disk spindle:</P>
<TABLE BORDER="1">
<CAPTION ALIGN="BOTTOM"><B>Table 3: PCP and sar metric equivalents</B></CAPTION>
<TR VALIGN="TOP">
<TH>Metric</TH>
<TH>Units</TH>
<TH>PCP equivalent<BR>
(in terms of the rate converted metrics in Table 2)</TH>
</TR>
<TR VALIGN="TOP">
<TD><I><TT>%busy</TT></I></TD>
<TD>percent</TD>
<TD>100 * <I><TT>disk.dev.active</TT></I> </TD>
</TR>
<TR VALIGN="TOP">
<TD><I><TT>avque</TT></I></TD>
<TD>I/O operations</TD>
<TD>N/A (see above)</TD>
</TR>
<TR VALIGN="TOP">
<TD><I><TT>r+w/s</TT></I></TD>
<TD>I/Os per second</TD>
<TD><I><TT>disk.dev.total</TT></I></TD>
</TR>
<TR VALIGN="TOP">
<TD><I><TT>blks/s</TT></I></TD>
<TD>512-byte blocks per second</TD>
<TD><I><TT>disk.dev.blktotal</TT></I></TD>
</TR>
<TR VALIGN="TOP">
<TD><I><TT>w/s</TT></I></TD>
<TD><B>write</B> I/Os per second</TD>
<TD><I><TT>disk.dev.write</TT></I></TD>
</TR>
<TR VALIGN="TOP">
<TD><I><TT>wblks/s</TT></I></TD>
<TD>512-byte blocks <B>written</B> per second</TD>
<TD><I><TT>disk.dev.blkwrite</TT></I></TD>
</TR>
<TR VALIGN="TOP">
<TD><I><TT>avwait</TT></I></TD>
<TD>milliseconds</TD>
<TD>1000 * (<I><TT>disk.dev.response</TT></I> <I><TT>-
disk.dev.active)</TT></I> / <I><TT>disk.dev.total</TT></I></TD>
</TR>
<TR VALIGN="TOP">
<TD><I><TT>avserv</TT></I></TD>
<TD>milliseconds</TD>
<TD>1000 * <I><TT>disk.dev.active</TT></I> / <I><TT>disk.dev.total</TT></I></TD>
</TR>
</TABLE>
<P>
The table below shows how the PCP tools and <I>sar</I> would report the
disk performance over the 100 millisecond interval from the example
above:</P>
<TABLE BORDER="1">
<CAPTION ALIGN="BOTTOM"><B>Table 3: Illustrative values and
calculations</B></CAPTION>
<TR>
<TH>Rate converted PCP metric<BR>
(like in Table 2)</TH>
<TH>sar metrics</TH>
<TH>Explanation</TH>
</TR>
<TR>
<TD><I><TT>disk.dev.read</TT></I></TD>
<TD>N/A</TD>
<TD>4 reads in 100 msec = 40 reads per second</TD>
</TR>
<TR>
<TD><I><TT>disk.dev.write</TT></I></TD>
<TD><I><TT>w/s</TT></I></TD>
<TD>2 writes in 100 msec = 20 writes per second</TD>
</TR>
<TR>
<TD><I><TT>disk.dev.total</TT></I></TD>
<TD><I><TT>r+w/s</TT></I></TD>
<TD>4 reads + 2 write in 100 msec = 60 I/Os per second</TD>
</TR>
<TR>
<TD><I><TT>disk.dev.blkread</TT></I></TD>
<TD>N/A</TD>
<TD>4 * 4 Kbytes = 32 blocks in 100 msec = 320 blocks read per
second</TD>
</TR>
<TR>
<TD><I><TT>disk.dev.blkwrite</TT></I></TD>
<TD><I><TT>wblks/s</TT></I></TD>
<TD>2 * 16 Kbytes = 64 blocks in 100 msec = 640 blocks written
per second</TD>
</TR>
<TR>
<TD><I><TT>disk.dev.blktotal</TT></I></TD>
<TD><I><TT>blks/s</TT></I></TD>
<TD>96 blocks in 100 msec = 960 blocks per second</TD>
</TR>
<TR>
<TD><I><TT>disk.dev.read_bytes</TT></I></TD>
<TD>N/A</TD>
<TD>4 * 4 Kbytes = 16 Kbytes in 100 msec = 160 Kbytes per second</TD>
</TR>
<TR>
<TD><I><TT>disk.dev.write_bytes</TT></I></TD>
<TD>N/A</TD>
<TD>2 * 16 Kbytes = 32 Kbytes in 100 msec = 320 Kbytes per
second</TD>
</TR>
<TR>
<TD><I><TT>disk.dev.bytes</TT></I></TD>
<TD>N/A</TD>
<TD>48 Kbytes in 100 msec = 480 Kbytes per second</TD>
</TR>
<TR>
<TD><I><TT>disk.dev.active</TT></I></TD>
<TD><I><TT>%busy</TT></I></TD>
<TD>80 msec active in 100 msec = 0.8 or 80%</TD>
</TR>
<TR>
<TD><I><TT>disk.dev.response</TT></I></TD>
<TD>N/A</TD>
<TD>Disregard (see comments in Table 2)</TD>
</TR>
<TR>
<TD>N/A</TD>
<TD><I><TT>avque</TT></I></TD>
<TD>1.67 requests (see derivation above)</TD>
</TR>
<TR>
<TD>N/A</TD>
<TD><I><TT>avwait</TT></I></TD>
<TD>6.67 msec (see derivation above)</TD>
</TR>
<TR>
<TD>N/A</TD>
<TD><I><TT>avserv</TT></I></TD>
<TD>13.33 msec (see derivation above)</TD>
</TR>
</TABLE>
<P>
In practice many of these metrics are of little use. Fortunately the
most common performance problems related to disks can be identified
quite simply as follows:</P>
<DL>
<DT>
<B>Device saturation</B>
<DD>
Occurs when <I><TT>disk.dev.active</TT></I> is close to 1.0
(which is the same as <I><TT>%busy</TT></I> is close to 100%).
<DT>
<B>Device throughput</B>
<DD>
Use <I><TT>disk.dev.bytes</TT></I> (or <I><TT>blks/s</TT></I>
divided by 2 to produce Kbytes per second)
<DD>
The peak value depends on the bus and disk characteristics, and is
subject to significant variation depending on the distribution, size
and type of requests. Fortunately in many environments the peak value
does not change over time, so once established, monitoring thresholds
tend to remain valid.
<DT>
<B>Read/write mix</B>
<DD>
For some disks (and RAID devices in particular) writes may be slower
than reads. The ratio of <I><TT>disk.dev.write</TT></I> to <I><TT>disk.dev.total</TT></I>
(or <I><TT>w/s</TT></I> to <I><TT>r+w/s</TT></I>) indicates the
fraction of I/O requests that are writes.
</DL>
<P>
In terms of the available instrumentation from the IRIX kernel, one
potentially useful metric would be the stochastic average of the
response time per completed I/O operation, which in the sample above
would be 20 msec. Unfortunately no performance tool reports this
directly.</P>
<UL>
<LI>
For <I>sar</I>, this metric is the sum of <I><TT>avwait</TT></I>
and <I><TT>avserv</TT></I>.
<P>
</P>
<LI>
The common PCP tools only support temporal rate conversion for
counters, however the stochastic average of the response time can be
computed with the PCP inference engine (<I>pmie</I>) using an
expression of the form:
<PRE>
<TT>avg_resp = 1000 * disk.dev.response / disk.dev.total;</TT>
</PRE>
</UL>
<P><BR></P>
<TABLE WIDTH="100%" BORDER=0 CELLPADDING=0 CELLSPACING=0 BGCOLOR="#e2e2e2">
<TR><TD WIDTH="100%" BGCOLOR="#081c59"><P ALIGN=LEFT><FONT SIZE=5 COLOR="#ffffff"><B>A real example</B></FONT></P></TD></TR>
</TABLE>
<P>
Consider this data from<B> sar -d</B> with a <B>10 minute</B> update
interval:</P>
<PRE>
device %busy avque r+w/s blks/s w/s wblks/s avwait avserv
dks0d2 34 12.8 32 988 29 874 123.1 10.5
dks0d5 34 12.5 33 1006 29 891 119.0 10.4
</PRE>
<P>
At first impression, queue lengths of 12-13 requests and wait time of
120msec looks pretty bad. </P>
<P>
But further investigation is warranted ...</P>
<UL>
<LI>
most of the I/Os are writes (58 of 65 I/Os per second)
<LI>
average I/Os are (874+891)*512/(29+29) = 15580 bytes ... close to
default 16K filesystem block size
<LI>
to sustain (874+891)*512 = 903680 bytes of write throughput per second
for at least 10 minutes you are doing a lot of file writes
<LI>
the disks are not unduly busy at 34% utilization
<LI>
consider what happens when <I>bdflush</I>, <I>pdflush</I> and
friends run ... lets make some simplifying assumptions to make the
arithmetic easy
<UL>
<LI>
we are dirtying (writing) 60 x 16 Kbyte pages (983040 bytes) per second
<LI>
flushing goes off every 10 seconds, but the page cache is scanned in
something under 10 msec
<LI>
to keep up, each flush must push out 600 pages
<LI>
I/O is balanced across 2 disks
<LI>
disk service time is 10 msec per I/O
<LI>
after the flushing code has scanned the page cache, all 300 writes per
disk are on the queue <B>before</B> the first one is done (this
is what skews the wait time and queue lengths)
</UL>
<LI>
disk utilization is 300 * 10 / (10 * 1000) = 0.3 = 30%
<LI>
the stochastic average wait time is (0 + 10 + 20 + ... + 2990) / 300
> = 150 msec
<LI>
time to empty the queue after a flush is 3 seconds
<LI>
the temporal average queue length is 0 * 7/10 + 150 * 3/10 = 45
</UL>
<P>
The complicating issue here is that the I/O demand is very bursty and
this is what skews the "average" measures.</P>
<P>
In this case, the I/O is probably <B>asynchronous</B> with respect to
the process(es) doing the writing. Under these circumstances,
performance is unlikely to improve dramatically if the aggregate I/O
bandwidth was increased (e.g. by spreading the writes across more disk
spindles).</P>
<P>
However if the I/O is <B>synchronous</B> (e.g. it it was read dominated,
or the I/O was to a raw disk), then more I/O would reduce application
running time.</P>
<P>
There are also <B>hybrid</B> scenarios in which a small number of
synchronous reads are seriously slowed down during the bursts of
asynchronous writes. In the example above, a read could have the
misfortune of being queued behind 300 writes (or delayed for 3 seconds).</P>
<P><BR></P>
<TABLE WIDTH="100%" BORDER=0 CELLPADDING=0 CELLSPACING=0 BGCOLOR="#e2e2e2">
<TR><TD WIDTH="100%" BGCOLOR="#081c59"><P ALIGN=LEFT><FONT SIZE=5 COLOR="#ffffff"><B>Beware of Wait I/O</B></FONT></P></TD></TR>
</TABLE>
<P>
PCP (and <I>sar</I> and <I>osview</I> and ...) all report CPU
utilization broken down into:</P>
<UL>
<LI>
user
<LI>
system (sys, intr)
<LI>
idle
<LI>
wait (for file system I/O, graphics, physical I/O and swap I/O)
</UL>
<P>
Because I/O does not "belong" to any processor (and in some
cases may not "belong" to any current process), a CPU that is
"waiting for I/O" is more accurately described as an
"idle CPU while at least one I/O is outstanding".</P>
<P>
Anomalous Wait I/O time occurs under light load when a small number of <B>processes</B>
are waiting for I/O but many <B>CPUs</B> are otherwise idle, but
appear in the "Wait for I/O" state. When the number of CPUs
increases to 30, 60 or 120 then 1 process doing I/O can make all of the
CPUs except 1 look like they are all waiting for I/O, but clearly no
amount of I/O bandwidth increase is going to make any difference to
these CPUs. And if that one process is doing asynchronous I/O and not
blocking, then additional I/O bandwidth will not make it run faster
either.</P>
<TABLE WIDTH="100%" BORDER=0 CELLPADDING=10 CELLSPACING=20>
<TR><TD BGCOLOR="#e2e2e2" WIDTH="70%"><BR><IMG SRC="images/stepfwd_on.png" ALT="" WIDTH=16 HEIGHT=16 BORDER=0> Using <I>pmchart</I> to display concurrent disk and CPU activity (aggregated over all CPUs and all disks respectively).<BR>
<PRE><B>
$ source /etc/pcp.conf
$ tar xzf $PCP_DEMOS_DIR/tutorials/diskperf.tgz
$ pmchart -t 2sec -O -0sec -a diskperf/waitio -c diskperf/waitio.view
</B></PRE>
<P>The system has 4 CPUs, several disks and only 1 process really doing I/O.</P>
<P>Note that over time:</P>
<UL>
<LI>
in the top chart as the CPU user (blue) and system (red) time
increases, the Wait I/O (pale blue) time decreases
<LI>
from the bottom chart, the I/O rate is pretty constant throughout
<LI>
in the bursts where the I/O rate falls, the Wait I/O time becomes CPU
idle (green) time
</UL>
</TD></TR>
</TABLE>
<P><BR></P>
<HR>
<CENTER>
<TABLE WIDTH="100%" BORDER=0 CELLPADDING=0 CELLSPACING=0>
<TR> <TD WIDTH="50%"><P>Copyright © 2007-2010 <A HREF="https://www.aconex.com/"><FONT COLOR="#000060">Aconex</FONT></A><BR>Copyright © 2000-2004 <A HREF="https://www.sgi.com/"><FONT COLOR="#000060">Silicon Graphics Inc</FONT></A></P></TD>
<TD WIDTH="50%"><P ALIGN=RIGHT><A HREF="https://pcp.io/"><FONT COLOR="#000060">PCP Site</FONT></A><BR>Copyright © 2012-2018 <A HREF="https://www.redhat.com/"><FONT COLOR="#000060">Red Hat</FONT></A></P></TD> </TR>
</TABLE>
</CENTER>
</BODY>
</HTML>
|