File: opentelemetry_endpoint.python

package info (click to toggle)
pcp 7.1.0-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 252,748 kB
  • sloc: ansic: 1,483,656; sh: 182,366; xml: 160,462; cpp: 83,813; python: 24,980; perl: 18,327; yacc: 6,877; lex: 2,864; makefile: 2,738; awk: 165; fortran: 60; java: 52
file content (262 lines) | stat: -rw-r--r-- 13,477 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
#!/usr/bin/env pmpython
"""Test pmdaopentelemetry via exposing fake endpoints -*- python -*- """
#
# Copyright (C) 2025 Red Hat.
#
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 2 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#

import time
import re
import queue
import threading
import socket
from http.server import HTTPServer, BaseHTTPRequestHandler
import argparse
import json
from copy import deepcopy

activeEndpoint = dict()


def write_endpoint_metadata(args=None, endpoint=None):
    endpointStr = "http://{}:{}/{}{}".format("localhost", args.addr[1], args.url, endpoint)
    f = open('{}/{}'.format(str(args.output), "source"+str(endpoint)+".url"), 'w')
    f.write("{}\n".format(endpointStr))
    f.close()

class FakeEndpoint(BaseHTTPRequestHandler):
    def sample_gauge_data(self, iteration=None, instances=None, metrics=None, endpointNum=None):
        gauge_value = 12.1
        instance_scale = 1
        instance_count = 0
        format_name = 'sample_gauge{:04d}'.format(endpointNum)
        format_desc = 'sample_gauge{:04d} instance scale {}, value scale {}'.format(endpointNum, instance_scale, gauge_value)
        gauge_string = {'name': 'sample_gauge', 'unit': '1', 'description': 'description', 'gauge': {'aggregationTemporality': '2', 'isMonotonic': 'True', 'dataPoints': [{'asDouble': '5', 'timeUnixNano': '1544712660300000000', 'attributes': [{'key': 'labels', 'value': {'stringValue': 'some.interesting.labels'}}]}]}}
        points = gauge_string['gauge']['dataPoints'][0]
        gauge_string['name'] = format_name
        gauge_string['description'] = format_desc
        data = []
        for i in range(instances):
            copy = deepcopy(points)
            format_instname = "{{bar=\'{:.1f}\'}}".format(i * instance_scale)
            format_value = "{:.1f}".format((int(iteration) * instance_count * gauge_value))
            inst_dict = {'key': 'instance', 'value': {'stringValue': format_instname}}
            copy['asDouble'] = format_value
            copy['attributes'].append(inst_dict)
            data.append(copy)
            instance_count += 1
        gauge_string['gauge']['dataPoints'] = data
        return gauge_string

    def sample_counter_data(self, iteration=None, instances=None, metrics=None, endpointNum=None):
        counter_value = 1.70205394e+08
        instance_scale = 0.7
        instance_count = 0
        format_name = 'sample_counter{:04d}'.format(endpointNum)
        format_desc = 'sample_counter{:04d} instance scale {} value scale {}'.format(endpointNum, instance_scale, counter_value)
        counter_string = {'name': 'sample_counter', 'unit': '1', 'description': 'description', 'sum': {'aggregationTemporality': '2', 'isMonotonic': 'True', 'dataPoints': [{'asDouble': 10, 'timeUnixNano': '1544712660300000000', 'attributes': [{'key': 'labels', 'value': {'stringValue': 'some.interesting.labels'}}]}]}}
        points = counter_string['sum']['dataPoints'][0]
        counter_string['name'] = format_name
        counter_string['description'] = format_desc
        data = []
        for i in range(instances):
            copy = deepcopy(points)
            format_instname = "{{baz=\'{:.1f}\'}}".format(i * instance_scale)
            format_value = "{:.8e}".format((int(iteration) * instance_count * counter_value))
            inst_dict = {'key': 'instance', 'value': {'stringValue': format_instname}}
            copy['asDouble'] = format_value
            copy['attributes'].append(inst_dict)
            data.append(copy)
            instance_count += 1
        counter_string['sum']['dataPoints'] = data
        return counter_string

    def sample_summary_data(self, iteration=None, instances=None, metrics=None, endpointNum=None):
        summary_value_q0 = 0.000159623
        summary_value_sum = 1.3912067700000001
        summary_value_count = 1818
        instance_scale = 0.25
        instance_count = 0
        format_name = 'sample_summary{:04d}'.format(endpointNum)
        format_desc = 'sample_summary{:04d} instance scale {} value scale {}'.format(endpointNum, instance_scale, summary_value_q0)
        format_count = '{:d}'.format((int(iteration) * int(summary_value_count)))
        format_sum = '{:16f}'.format((int(iteration) * float(summary_value_sum)))
        summary_string = {'name': 'my.summary', 'description': '', 'unit': '', 'summary': {'dataPoints': [{'attributes': [{'key': 'labels', 'value': {'stringValue': 'some.interesting.labels'}}], 'timeUnixNano': 1741190626268846852, 'count': 1, 'sum': 99.9, 'quantileValues': []}]}}
        points = summary_string['summary']['dataPoints'][0]
        summary_string['name'] = format_name
        summary_string['description'] = format_desc
        points["count"] = format_count
        points["sum"] = format_sum
        for i in range(instances):
            points["quantileValues"].append({'quantile': (i * instance_scale), 'value': (int(iteration) * instance_count * float(summary_value_q0))})
            instance_count += 1
        return summary_string

    def sample_histogram_data(self, iteration=None, instances=None, metrics=None, endpointNum=None):
        histogram_value_l1 = 5945
        histogram_value_sum = 45157
        histogram_value_count = 18135
        instance_scale = 2
        instance_count = 0
        format_name = 'sample_histogram{:04d}'.format(endpointNum)
        format_desc = 'sample_histogram{:04d} instance scale {} value scale {} (sample histogram has instances)'.format(endpointNum, instance_scale, histogram_value_l1)
        format_count = "{:d}".format((int(instances) * int(histogram_value_count)))
        format_sum = "{:d}".format((int(instances) * int(histogram_value_sum)))
        histogram_string = {'name': 'my.histogram', 'description': '', 'unit': '', 'histogram': {'dataPoints': [{'attributes': [{}], 'timeUnixNano': 1741190626268846852, 'count': 1, 'sum': 99.9, 'bucketCounts': [], 'explicitBounds': [], 'min': 99.9, 'max': 99.9, 'exemplars': []}], 'aggregationTemporality': 2}}
        points = histogram_string['histogram']['dataPoints'][0]
        histogram_string['name'] = format_name
        histogram_string['description'] = format_desc
        points["count"] = format_count
        points["sum"] = format_sum
        for i in range(instances):
            points["bucketCounts"].append((int(iteration) * instance_count * histogram_value_l1))
            points["explicitBounds"].append((i * instance_scale))
            instance_count += 1
        points["bucketCounts"].append(0)
        return histogram_string
 
    def start_string(self):
        start = {'resourceMetrics': [{'resource': {'attributes': [{'key': 'service.name', 'value': {'stringValue': 'my.service'}}]}, 'scopeMetrics': [{'scope': {'name': 'my.library', 'version': '1.0.0', 'attributes': [{'key': 'my.scope.attribute', 'value': {'stringValue': 'some.scope.attribute'}}]}, 'metrics': []}]}]}
        return start

    def format_opentelemetry_output(self, metrics=None, iteration=None, instances=None, error=None, endpointNum=None):
        metrics_remaining = metrics
        endpoint_string = self.start_string()
        helper = endpoint_string['resourceMetrics'][0]['scopeMetrics'][0]['metrics']

        while metrics_remaining >= 0:
            helper.append(self.sample_gauge_data(iteration, instances, metrics_remaining, (metrics-metrics_remaining)))
            metrics_remaining -= 1
            iteration += 1
            if metrics_remaining <= 0:
                break
            helper.append(self.sample_counter_data(iteration, instances, metrics_remaining, (metrics-metrics_remaining)))
            metrics_remaining -= 1
            iteration += 1
            if metrics_remaining <= 0:
                break
            helper.append(self.sample_summary_data(iteration, instances, metrics_remaining, (metrics-metrics_remaining)))
#            metrics_remaining -= 4
            metrics_remaining -= instances
            iteration += 1
            if metrics_remaining <= 0:
                break
            helper.append(self.sample_histogram_data(iteration, instances, metrics_remaining, (metrics-metrics_remaining)))
#            metrics_remaining -= 5
            metrics_remaining -= instances
            iteration += 1
        endpoint_string = json.dumps(endpoint_string, sort_keys=False, indent=4, separators=(',', ': '))
        if error is not None:
            return endpoint_string[:int(len(endpoint_string)/int(error))]
        else:
            return endpoint_string

    def do_GET(self):
        time.sleep(float(self.server.args.delay))
        if len(activeEndpoint) > 0:
            endpoint_regex = re.compile(str(self.server.args.url))
            iteration = re.split(endpoint_regex, self.path)
            if len(iteration) > 1 and int(iteration[1]) in activeEndpoint:
                endpointNum = int(iteration[1])
                if int(self.server.args.error) and not activeEndpoint[endpointNum] % int(self.server.args.error) and activeEndpoint[endpointNum]:
                    error = int(self.server.args.error)
                else:
                    error = None
                self.send_response(200)
                self.end_headers()
                self.wfile.write(self.format_opentelemetry_output(int(self.server.args.metrics), endpointNum*(activeEndpoint[endpointNum]), int(self.server.args.instances), error, endpointNum).encode())  # multiply by activeendpoint value or something?
                self.server.lock.acquire()
                try:
                    activeEndpoint[endpointNum] += 1
                    if activeEndpoint[endpointNum] >= int(self.server.args.limit):
                        del activeEndpoint[endpointNum] #do we even really need to do this?
                        self.server.pqueue.task_done()
                        try:
                            _next = self.server.pqueue.get_nowait()
                            activeEndpoint[int(_next)] = 0
                            write_endpoint_metadata(self.server.args, _next)
                        except queue.Empty:
                            pass
                finally:
                    self.server.lock.release()
            else:
                self.send_error(404)
        return

class PrometheusEndpoint(threading.Thread):
    def __init__(self, pqueue=None, args=None):
        threading.Thread.__init__(self)
        self.daemon = True
        self.pqueue = pqueue
        self.args = args
        self.lock = threading.Lock()
        self.server = None
        self.start()

    def run(self):
        try:
            endpoint = self.pqueue.get_nowait()
            self.lock.acquire()
            try:
                activeEndpoint[endpoint] = 0
                write_endpoint_metadata(self.args, endpoint)
            finally:
                self.lock.release()
        except queue.Empty:
            pass

        finally:
            httpd = HTTPServer(self.args.addr, FakeEndpoint, False)
            httpd.socket = self.args.sock
            httpd.pqueue = self.pqueue
            httpd.delay = self.args.delay
            httpd.args = self.args
            httpd.server_bind = self.server_close = lambda self: None
            httpd.lock = self.lock
            self.server = httpd
            self.server.serve_forever()

def parsing():
    parser = argparse.ArgumentParser(description='Setup a number of fake opentelemetry endpoints for collection.')
    parser.add_argument('--endpoints', default=2, help='number of opentelemetry endpoints to start at once')
    parser.add_argument('--metrics', default=5, help='number of metrics per opentelemetry endpoint')
    parser.add_argument('--instances', default=5, help='number of instances per metric')
    parser.add_argument('--delay', default=0,  help='delay time (seconds) for each "slow" node')
    parser.add_argument('--limit', default=5, help='number of iterations/responses each endpoint limits itself to')
    parser.add_argument('--total', default=5, help='total number of endpoints to run')
    parser.add_argument('--port', default=10000, help='port to start fake endpoints on')
    parser.add_argument('--error', default=0, help='create errornous data in opentelemetry endpoints')
    parser.add_argument('--url', default="foo&endpoint=", help='url for the endpoint, the endpoint number must be the last part')
    parser.add_argument('--output', default="/tmp", help='directory to create endpoint metadata in')
    args = parser.parse_args()
    return args

if __name__ == '__main__':

    args = parsing()
    pendpointQueue = queue.Queue()
    addr = ('', int(args.port))
    sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
    sock.bind(addr)
    sock.listen(int(args.port))
    args.addr = addr
    args.sock = sock

    for endpoint in range(int(args.total)):
        pendpointQueue.put(endpoint)

    pendpoints = [PrometheusEndpoint(pendpointQueue, args)
                  for i in range(int(args.endpoints))]

    pendpointQueue.join()
    sock.close()