File: LibSensors.c

package info (click to toggle)
pcp 7.1.0-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 252,748 kB
  • sloc: ansic: 1,483,656; sh: 182,366; xml: 160,462; cpp: 83,813; python: 24,980; perl: 18,327; yacc: 6,877; lex: 2,864; makefile: 2,738; awk: 165; fortran: 60; java: 52
file content (451 lines) | stat: -rw-r--r-- 13,304 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
/*
htop - linux/LibSensors.c
(C) 2020-2023 htop dev team
Released under the GNU GPLv2+, see the COPYING file
in the source distribution for its full text.
*/

#include "config.h" // IWYU pragma: keep

#include "linux/LibSensors.h"

#ifdef HAVE_SENSORS_SENSORS_H

#include <assert.h>
#include <dlfcn.h>
#include <errno.h>
#include <limits.h>
#include <math.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <sensors/sensors.h>

#include "Macros.h"
#include "XUtils.h"
#include "linux/LinuxMachine.h"


#ifdef BUILD_STATIC

#define sym_sensors_init sensors_init
#define sym_sensors_cleanup sensors_cleanup
#define sym_sensors_get_detected_chips sensors_get_detected_chips
#define sym_sensors_get_features sensors_get_features
#define sym_sensors_get_subfeature sensors_get_subfeature
#define sym_sensors_get_value sensors_get_value
#define sym_sensors_get_label sensors_get_label

#else

static int (*sym_sensors_init)(FILE*);
static void (*sym_sensors_cleanup)(void);
static const sensors_chip_name* (*sym_sensors_get_detected_chips)(const sensors_chip_name*, int*);
static const sensors_feature* (*sym_sensors_get_features)(const sensors_chip_name*, int*);
static const sensors_subfeature* (*sym_sensors_get_subfeature)(const sensors_chip_name*, const sensors_feature*, sensors_subfeature_type);
static int (*sym_sensors_get_value)(const sensors_chip_name*, int, double*);
static char* (*sym_sensors_get_label)(const sensors_chip_name*, const sensors_feature *feature);

static void* dlopenHandle = NULL;

#endif /* BUILD_STATIC */

int LibSensors_init(void) {
#ifdef BUILD_STATIC

   return sym_sensors_init(NULL);

#else

   if (!dlopenHandle) {
      /* Find the unversioned libsensors.so (symlink) and prefer that, but Debian has .so.5 and Fedora .so.4 without
         matching symlinks (unless people install the -dev packages) */
      dlopenHandle = dlopen("libsensors.so", RTLD_LAZY);
      if (!dlopenHandle)
         dlopenHandle = dlopen("libsensors.so.5", RTLD_LAZY);
      if (!dlopenHandle)
         dlopenHandle = dlopen("libsensors.so.4", RTLD_LAZY);
      if (!dlopenHandle)
         goto dlfailure;

      /* Clear any errors */
      dlerror();

      #define resolve(symbolname) do {                                      \
         *(void **)(&sym_##symbolname) = dlsym(dlopenHandle, #symbolname);  \
         if (!sym_##symbolname || dlerror() != NULL)                        \
            goto dlfailure;                                                 \
      } while(0)

      resolve(sensors_init);
      resolve(sensors_cleanup);
      resolve(sensors_get_detected_chips);
      resolve(sensors_get_features);
      resolve(sensors_get_subfeature);
      resolve(sensors_get_value);
      resolve(sensors_get_label);

      #undef resolve
   }

   return sym_sensors_init(NULL);


dlfailure:
   if (dlopenHandle) {
      dlclose(dlopenHandle);
      dlopenHandle = NULL;
   }
   return -1;

#endif /* BUILD_STATIC */
}

void LibSensors_cleanup(void) {
#ifdef BUILD_STATIC

   sym_sensors_cleanup();

#else

   if (dlopenHandle) {
      sym_sensors_cleanup();

      dlclose(dlopenHandle);
      dlopenHandle = NULL;
   }

#endif /* BUILD_STATIC */
}

int LibSensors_reload(void) {
#ifndef BUILD_STATIC
   if (!dlopenHandle) {
      errno = ENOTSUP;
      return -1;
   }
#endif /* !BUILD_STATIC */

   sym_sensors_cleanup();
   return sym_sensors_init(NULL);
}

static int tempDriverPriority(const sensors_chip_name* chip) {
   static const struct TempDriverDefs {
      const char* prefix;
      int priority;
   } tempDrivers[] =  {
      { "coretemp",           0 },
      { "via_cputemp",        0 },
      { "cpu_thermal",        0 },
      { "k10temp",            0 },
      { "zenpower",           0 },
      /* Rockchip RK3588 */
      { "littlecore_thermal", 0 },
      { "bigcore0_thermal",   0 },
      { "bigcore1_thermal",   0 },
      { "bigcore2_thermal",   0 },
      /* Rockchip RK3566 */
      { "soc_thermal",        0 },
      /* Snapdragon 8cx */
      { "cpu0_thermal",       0 },
      { "cpu1_thermal",       0 },
      { "cpu2_thermal",       0 },
      { "cpu3_thermal",       0 },
      { "cpu4_thermal",       0 },
      { "cpu5_thermal",       0 },
      { "cpu6_thermal",       0 },
      { "cpu7_thermal",       0 },
      /* Amlogic S905W */
      { "scpi_sensors",       0 },
      /* Snapdragon 410 */
      { "cpu0_1_thermal",     0 },
      { "cpu2_3_thermal",     0 },
      /* Low priority drivers */
      { "acpitz",             1 },
   };

   for (size_t i = 0; i < ARRAYSIZE(tempDrivers); i++)
      if (String_eq(chip->prefix, tempDrivers[i].prefix))
         return tempDrivers[i].priority;

   return -1;
}

int LibSensors_countCCDs(void) {

#ifndef BUILD_STATIC
   if (!dlopenHandle)
      return 0;
#endif /* !BUILD_STATIC */

   int ccds = 0;

   int n = 0;
   for (const sensors_chip_name* chip = sym_sensors_get_detected_chips(NULL, &n); chip; chip = sym_sensors_get_detected_chips(NULL, &n)) {
      int m = 0;
      for (const sensors_feature* feature = sym_sensors_get_features(chip, &m); feature; feature = sym_sensors_get_features(chip, &m)) {
         if (feature->type != SENSORS_FEATURE_TEMP)
            continue;

         if (!feature->name || !String_startsWith(feature->name, "temp"))
            continue;

         char *label = sym_sensors_get_label(chip, feature);
         if (label) {
            if (String_startsWith(label, "Tccd")) {
               ccds++;
            }
            free(label);
         }
      }
   }

   return ccds;
}

void LibSensors_getCPUTemperatures(CPUData* cpus, unsigned int existingCPUs, unsigned int activeCPUs) {
   assert(existingCPUs > 0 && existingCPUs < 16384);

   double* data = xMallocArray(existingCPUs + 1, sizeof(double));
   for (size_t i = 0; i < existingCPUs + 1; i++)
      data[i] = NAN;

#ifndef BUILD_STATIC
   if (!dlopenHandle)
      goto out;
#endif /* !BUILD_STATIC */

   unsigned int coreTempCount = 0;
   int topPriority = 99;

   int ccdID = 0;

   int n = 0;
   for (const sensors_chip_name* chip = sym_sensors_get_detected_chips(NULL, &n); chip; chip = sym_sensors_get_detected_chips(NULL, &n)) {
      const int priority = tempDriverPriority(chip);
      if (priority < 0)
         continue;

      if (priority > topPriority)
         continue;

      if (priority < topPriority) {
         /* Clear data from lower priority sensor */
         for (size_t i = 0; i < existingCPUs + 1; i++)
            data[i] = NAN;
      }

      topPriority = priority;

      int physicalID = 0;

      int m = 0;
      for (const sensors_feature* feature = sym_sensors_get_features(chip, &m); feature; feature = sym_sensors_get_features(chip, &m)) {
         if (feature->type != SENSORS_FEATURE_TEMP)
            continue;

         if (!feature->name || !String_startsWith(feature->name, "temp"))
            continue;

         unsigned long int tempID = strtoul(feature->name + strlen("temp"), NULL, 10);
         if (tempID == 0 || tempID == ULONG_MAX)
            continue;

         /* Feature name IDs start at 1, adjust to start at 0 to match data indices */
         tempID--;

         const sensors_subfeature* subFeature = sym_sensors_get_subfeature(chip, feature, SENSORS_SUBFEATURE_TEMP_INPUT);
         if (!subFeature)
            continue;

         double temp;
         int r = sym_sensors_get_value(chip, subFeature->number, &temp);
         if (r != 0)
            continue;

         if (existingCPUs == 8) {
            /* Map temperature values to Snapdragon 8cx cores */
            if (String_startsWith(chip->prefix, "cpu") && chip->prefix[3] >= '0' && chip->prefix[3] <= '7' && String_eq(chip->prefix + 4, "_thermal")) {
               data[1 + chip->prefix[3] - '0'] = temp;
               coreTempCount++;
               continue;
            }

            /* Map temperature values to Rockchip cores
             *
             *   littlecore -> cores 1..4
             *   bigcore0   -> cores 5,6
             *   bigcore1   -> cores 7,8
             */
            if (String_eq(chip->prefix, "littlecore_thermal")) {
               data[1] = temp;
               data[2] = temp;
               data[3] = temp;
               data[4] = temp;
               coreTempCount += 4;
               continue;
            }
            if (String_eq(chip->prefix, "bigcore0_thermal")) {
               data[5] = temp;
               data[6] = temp;
               coreTempCount += 2;
               continue;
            }
            if (String_eq(chip->prefix, "bigcore1_thermal") || String_eq(chip->prefix, "bigcore2_thermal")) {
               data[7] = temp;
               data[8] = temp;
               coreTempCount += 2;
               continue;
            }
         }

         /* Rockchip RK3566 */
         if (existingCPUs == 4) {
            if (String_eq(chip->prefix, "soc_thermal")) {
               data[1] = temp;
               data[2] = temp;
               data[3] = temp;
               data[4] = temp;
               coreTempCount += 4;
               continue;
            }
         }

         /* Snapdragon 410 */
         if (existingCPUs == 4) {
            if (String_eq(chip->prefix, "cpu0_1_thermal")) {
               data[1] = temp;
               data[2] = temp;
               coreTempCount += 2;
               continue;
            }
            if (String_eq(chip->prefix, "cpu2_3_thermal")) {
               data[3] = temp;
               data[4] = temp;
               coreTempCount += 2;
               continue;
            }
         }

         /* Amlogic S905W */
         if (String_eq(chip->prefix, "scpi_sensors")) {
            // Package temperature - assign to ALL cores and package
            for (size_t i = 0; i <= existingCPUs; i++) {
               data[i] = temp;
            }

            coreTempCount = existingCPUs;
            continue;
         }

         char *label = sym_sensors_get_label(chip, feature);
         if (label) {
            bool skip = true;
            /* Intel coretemp names, labels mention package and physical id */
            if (String_startsWith(label, "Package id ")) {
               physicalID = strtoul(label + strlen("Package id "), NULL, 10);
            } else if (String_startsWith(label, "Physical id ")) {
               physicalID = strtoul(label + strlen("Physical id "), NULL, 10);
            } else if (String_startsWith(label, "Core ")) {
               int coreID = strtoul(label + strlen("Core "), NULL, 10);
               for (size_t i = 1; i < existingCPUs + 1; i++) {
                  if (cpus[i].physicalID == physicalID && cpus[i].coreID == coreID) {
                     data[i] = temp;
                     coreTempCount++;
                  }
               }
            }

            /* AMD k10temp/zenpower names, only CCD is known */
            else if (String_startsWith(label, "Tccd")) {
               for (size_t i = 1; i <= existingCPUs; i++) {
                  if (cpus[i].ccdID == ccdID) {
                     data[i] = temp;
                     coreTempCount++;
                  }
               }
               ccdID++;
            } else {
               skip = false;
            }

            free(label);

            if (skip)
               continue;
         }

         if (tempID > existingCPUs)
            continue;

         /* If already set, e.g. Ryzen reporting platform temperature for each die, use the bigger one */
         if (isNaN(data[tempID])) {
            data[tempID] = temp;
            if (tempID > 0)
               coreTempCount++;
         } else {
            data[tempID] = MAXIMUM(data[tempID], temp);
         }
      }
   }

   /* Adjust data for chips not providing a platform temperature */
   if (coreTempCount + 1 == activeCPUs || coreTempCount + 1 == activeCPUs / 2) {
      memmove(&data[1], &data[0], existingCPUs * sizeof(*data));
      data[0] = NAN;
      coreTempCount++;

      /* Check for further adjustments */
   }

   /* Only package temperature - copy to all cores */
   if (coreTempCount == 0 && !isNaN(data[0])) {
      for (size_t i = 1; i <= existingCPUs; i++)
         data[i] = data[0];

      /* No further adjustments */
      goto out;
   }

   /* No package temperature - set to max core temperature */
   if (coreTempCount > 0 && isNaN(data[0])) {
      double maxTemp = -HUGE_VAL;
      for (size_t i = 1; i <= existingCPUs; i++) {
         if (isgreater(data[i], maxTemp)) {
            maxTemp = data[i];
            data[0] = data[i];
         }
      }

      /* Check for further adjustments */
   }

   /* Only temperature for core 0, maybe Ryzen - copy to all other cores */
   if (coreTempCount == 1 && !isNaN(data[1])) {
      for (size_t i = 2; i <= existingCPUs; i++)
         data[i] = data[1];

      /* No further adjustments */
      goto out;
   }

   /* Half the temperatures, probably HT/SMT - copy to second half */
   const size_t delta = activeCPUs / 2;
   if (coreTempCount == delta) {
      memcpy(&data[delta + 1], &data[1], delta * sizeof(*data));

      /* No further adjustments */
      goto out;
   }

out:
   for (size_t i = 0; i <= existingCPUs; i++)
      cpus[i].temperature = data[i];

   free(data);
}

#endif /* HAVE_SENSORS_SENSORS_H */