File: FixedPointTypes.inl

package info (click to toggle)
pcsx2 1.4.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 22,172 kB
  • ctags: 40,348
  • sloc: cpp: 232,892; ansic: 22,912; asm: 2,273; lisp: 1,346; sh: 561; perl: 253; makefile: 113; xml: 69
file content (241 lines) | stat: -rw-r--r-- 7,107 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
/*  PCSX2 - PS2 Emulator for PCs
 *  Copyright (C) 2002-2010  PCSX2 Dev Team
 *
 *  PCSX2 is free software: you can redistribute it and/or modify it under the terms
 *  of the GNU Lesser General Public License as published by the Free Software Found-
 *  ation, either version 3 of the License, or (at your option) any later version.
 *
 *  PCSX2 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
 *  without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
 *  PURPOSE.  See the GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License along with PCSX2.
 *  If not, see <http://www.gnu.org/licenses/>.
 */

#pragma once

#include "FixedPointTypes.h"
#include <cmath>		// for pow!

template< int Precision >
FixedInt<Precision>::FixedInt()
{
	Raw = 0;
}

template< int Precision >
FixedInt<Precision>::FixedInt( int signedval )
{
	Raw = signedval * Precision;
}

template< int Precision >
FixedInt<Precision>::FixedInt( double doubval )
{
	Raw = lround(doubval * (double)Precision);
}

template< int Precision >
FixedInt<Precision>::FixedInt( float floval )
{
	Raw = lroundf(floval * (float)Precision);
}

template< int Precision >
FixedInt<Precision> FixedInt<Precision>::operator+( const FixedInt<Precision>& right ) const
{
	return FixedInt<Precision>().SetRaw( Raw + right.Raw );
}

template< int Precision >
FixedInt<Precision> FixedInt<Precision>::operator-( const FixedInt<Precision>& right ) const
{
	return FixedInt<Precision>().SetRaw( Raw + right.Raw );
}

template< int Precision >
FixedInt<Precision>& FixedInt<Precision>::operator+=( const FixedInt<Precision>& right )
{
	return SetRaw( Raw + right.Raw );
}

template< int Precision >
FixedInt<Precision>& FixedInt<Precision>::operator-=( const FixedInt<Precision>& right )
{
	return SetRaw( Raw + right.Raw );
}

template< int Precision >
FixedInt<Precision>& FixedInt<Precision>::ConfineTo( const FixedInt<Precision>& low, const FixedInt<Precision>& high )
{
	return SetRaw( std::min( std::max( Raw, low.Raw ), high.Raw ) );
}

// Uses 64 bit internally to avoid overflows.  For more precise/optimized 32 bit math
// you'll need to use the Raw values directly.
template< int Precision >
FixedInt<Precision> FixedInt<Precision>::operator*( const FixedInt<Precision>& right ) const
{
	s64 mulres = (s64)Raw * right.Raw;
	return FixedInt<Precision>().SetRaw( (s32)(mulres / Precision) );
}

// Uses 64 bit internally to avoid overflows.  For more precise/optimized 32 bit math
// you'll need to use the Raw values directly.
template< int Precision >
FixedInt<Precision> FixedInt<Precision>::operator/( const FixedInt<Precision>& right ) const
{
	s64 divres = Raw * Precision;
	return FixedInt<Precision>().SetRaw( (s32)(divres / right.Raw) );
}

// Uses 64 bit internally to avoid overflows.  For more precise/optimized 32 bit math
// you'll need to use the Raw values directly.
template< int Precision >
FixedInt<Precision>& FixedInt<Precision>::operator*=( const FixedInt<Precision>& right )
{
	s64 mulres = (s64)Raw * right.Raw;
	return SetRaw( (s32)(mulres / Precision) );
}

// Uses 64 bit internally to avoid overflows.  For more precise/optimized 32 bit math
// you'll need to use the Raw values directly.
template< int Precision >
FixedInt<Precision>& FixedInt<Precision>::operator/=( const FixedInt<Precision>& right )
{
	s64 divres = Raw * Precision;
	return SetRaw( (s32)(divres / right.Raw) );
}

// returns TRUE if the value overflows the legal integer range of this container.
template< int Precision >
bool FixedInt<Precision>::OverflowCheck( int signedval )
{
	return ( signedval >= (INT_MAX / Precision) );
}

// returns TRUE if the value overflows the legal integer range of this container.
template< int Precision >
bool FixedInt<Precision>::OverflowCheck( double signedval )
{
	return ( signedval >= (INT_MAX / Precision) );
}

template< int Precision > int FixedInt<Precision>::GetWhole() const		{ return Raw / Precision; }
template< int Precision > int FixedInt<Precision>::GetFraction() const	{ return Raw % Precision; }

template< int Precision >
FixedInt<Precision>& FixedInt<Precision>::SetRaw( s32 rawsrc )
{
	Raw = rawsrc;
	return *this;
}

template< int Precision >
FixedInt<Precision>& FixedInt<Precision>::Round()
{
	Raw = ToIntRounded();
	return *this;
}

template< int Precision >
FixedInt<Precision>& FixedInt<Precision>::SetWhole( s32 wholepart )
{
	pxAssert( wholepart < (INT_MAX / Precision) );
	Raw = GetFraction() + (wholepart * Precision);
	return *this;
}

template< int Precision >
FixedInt<Precision>& FixedInt<Precision>::SetFraction( u32 fracpart )
{
	Raw = (GetWhole() * Precision) + fracpart;
	return *this;
}

template< int Precision >
wxString FixedInt<Precision>::ToString() const
{
	return wxsFormat( L"%d.%02d", GetWhole(), (GetFraction() * 100) / Precision );
}

template< int Precision >
wxString FixedInt<Precision>::ToString( int fracDigits ) const
{
	if( fracDigits == 0 ) return wxsFormat( L"%d", GetWhole() );

	pxAssert( fracDigits <= 7 );		// higher numbers would just cause overflows and bad mojo.
	int mulby = (int)pow( 10.0, fracDigits );
	wxString fmt=wxsFormat(L"%%d.%%0%dd", fracDigits);
	return wxsFormat( fmt, GetWhole(), (GetFraction() * mulby) / Precision );
}

template< int Precision >
double FixedInt<Precision>::ToDouble() const
{
	return ((double)Raw / (double)Precision);
}

template< int Precision >
float FixedInt<Precision>::ToFloat() const
{
	return ((float)Raw / (float)Precision);
}

template< int Precision >
int FixedInt<Precision>::ToIntTruncated() const
{
	return Raw / Precision;
}

template< int Precision >
int FixedInt<Precision>::ToIntRounded() const
{
	return (Raw + (Precision/2)) / Precision;
}

template< int Precision >
bool FixedInt<Precision>::TryFromString( FixedInt<Precision>& dest, const wxString& parseFrom )
{
	long whole=0, frac=0;
	const wxString beforeFirst( parseFrom.BeforeFirst( L'.' ) );
	const wxString afterFirst( parseFrom.AfterFirst( L'.' ).Mid(0, 5) );
	bool success = true;

	if( !beforeFirst.IsEmpty() )
		success = success && beforeFirst.ToLong( &whole );

	if( !afterFirst.IsEmpty() )
		success = success && afterFirst.ToLong( &frac );

	if( !success ) return false;

	dest.SetWhole( whole );

	if( afterFirst.Length() != 0 && frac != 0 )
	{
		int fracPower = (int)pow( 10.0, (int)afterFirst.Length() );
		dest.SetFraction( (frac * Precision) / fracPower );
	}
	return true;
}

template< int Precision >
FixedInt<Precision> FixedInt<Precision>::FromString( const wxString& parseFrom, const FixedInt<Precision>& defval )
{
	FixedInt<Precision> dest;
	if( !TryFromString( dest, parseFrom ) ) return defval;
	return dest;
}

// This version of FromString throws a ParseError exception if the conversion fails.
template< int Precision >
FixedInt<Precision> FixedInt<Precision>::FromString( const wxString parseFrom )
{
	FixedInt<Precision> dest;
	if( !TryFromString( dest, parseFrom ) ) throw Exception::ParseError()
		.SetDiagMsg(wxsFormat(L"Parse error on FixedInt<%d>::FromString", Precision));

	return dest;
}