1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
// SPDX-FileCopyrightText: 2002-2025 PCSX2 Dev Team
// SPDX-License-Identifier: GPL-3.0+
// This file abstracts the floating-point control registers, known as MXCSR on x86, and FPCR on AArch64.
#pragma once
#include "common/Pcsx2Defs.h"
#include "common/VectorIntrin.h"
enum class FPRoundMode : u8
{
Nearest,
NegativeInfinity,
PositiveInfinity,
ChopZero,
MaxCount
};
struct FPControlRegister
{
#ifdef _M_X86
u32 bitmask;
static constexpr u32 EXCEPTION_MASK = (0x3Fu << 7);
static constexpr u32 ROUNDING_CONTROL_SHIFT = 13;
static constexpr u32 ROUNDING_CONTROL_MASK = 3u;
static constexpr u32 ROUNDING_CONTROL_BITS = (ROUNDING_CONTROL_MASK << ROUNDING_CONTROL_SHIFT);
static constexpr u32 DENORMALS_ARE_ZERO_BIT = (1u << 6);
static constexpr u32 FLUSH_TO_ZERO_BIT = (1u << 15);
__fi static FPControlRegister GetCurrent()
{
return FPControlRegister{_mm_getcsr()};
}
__fi static void SetCurrent(FPControlRegister value)
{
_mm_setcsr(value.bitmask);
}
__fi static constexpr FPControlRegister GetDefault()
{
// 0x1f80 - all exceptions masked, nearest rounding
return FPControlRegister{0x1f80};
}
__fi constexpr FPControlRegister& EnableExceptions()
{
bitmask &= ~EXCEPTION_MASK;
return *this;
}
__fi constexpr FPControlRegister DisableExceptions()
{
bitmask |= EXCEPTION_MASK;
return *this;
}
__fi constexpr FPRoundMode GetRoundMode() const
{
return static_cast<FPRoundMode>((bitmask >> ROUNDING_CONTROL_SHIFT) & ROUNDING_CONTROL_MASK);
}
__fi constexpr FPControlRegister& SetRoundMode(FPRoundMode mode)
{
// These bits match on x86.
bitmask = (bitmask & ~ROUNDING_CONTROL_BITS) | ((static_cast<u32>(mode) & ROUNDING_CONTROL_MASK) << ROUNDING_CONTROL_SHIFT);
return *this;
}
__fi constexpr bool GetDenormalsAreZero() const
{
return ((bitmask & DENORMALS_ARE_ZERO_BIT) != 0);
}
__fi constexpr FPControlRegister SetDenormalsAreZero(bool daz)
{
if (daz)
bitmask |= DENORMALS_ARE_ZERO_BIT;
else
bitmask &= ~DENORMALS_ARE_ZERO_BIT;
return *this;
}
__fi constexpr bool GetFlushToZero() const
{
return ((bitmask & FLUSH_TO_ZERO_BIT) != 0);
}
__fi constexpr FPControlRegister SetFlushToZero(bool ftz)
{
if (ftz)
bitmask |= FLUSH_TO_ZERO_BIT;
else
bitmask &= ~FLUSH_TO_ZERO_BIT;
return *this;
}
__fi constexpr bool operator==(const FPControlRegister& rhs) const { return bitmask == rhs.bitmask; }
__fi constexpr bool operator!=(const FPControlRegister& rhs) const { return bitmask != rhs.bitmask; }
#elif defined(_M_ARM64)
u64 bitmask;
static constexpr u64 FZ_BIT = (0x1ULL << 24);
static constexpr u32 RMODE_SHIFT = 22;
static constexpr u64 RMODE_MASK = 0x3ULL;
static constexpr u64 RMODE_BITS = (RMODE_MASK << RMODE_SHIFT);
static constexpr u32 EXCEPTION_MASK = (0x3Fu << 5);
__fi static FPControlRegister GetCurrent()
{
u64 value;
asm volatile("\tmrs %0, FPCR\n"
: "=r"(value));
return FPControlRegister{value};
}
__fi static void SetCurrent(FPControlRegister value)
{
asm volatile("\tmsr FPCR, %0\n" ::"r"(value.bitmask));
}
__fi static constexpr FPControlRegister GetDefault()
{
// 0x0 - all exceptions masked, nearest rounding
return FPControlRegister{0x0};
}
__fi constexpr FPControlRegister& EnableExceptions()
{
bitmask |= EXCEPTION_MASK;
return *this;
}
__fi constexpr FPControlRegister& DisableExceptions()
{
bitmask &= ~EXCEPTION_MASK;
return *this;
}
__fi constexpr FPRoundMode GetRoundMode() const
{
// Negative/Positive infinity rounding is flipped on A64.
const u64 RMode = (bitmask >> RMODE_SHIFT) & RMODE_MASK;
return static_cast<FPRoundMode>((RMode == 0b00 || RMode == 0b11) ? RMode : (RMode ^ 0b11));
}
__fi constexpr FPControlRegister& SetRoundMode(FPRoundMode mode)
{
const u64 RMode = ((mode == FPRoundMode::Nearest || mode == FPRoundMode::ChopZero) ? static_cast<u64>(mode) : (static_cast<u64>(mode) ^ 0b11));
bitmask = (bitmask & ~RMODE_BITS) | ((RMode & RMODE_MASK) << RMODE_SHIFT);
return *this;
}
__fi constexpr bool GetDenormalsAreZero() const
{
// Without FEAT_AFP, most ARM chips don't have separate DaZ/FtZ. This includes Apple Silicon, which
// implements x86-like behavior with a vendor-specific extension that we cannot access from usermode.
// The FZ bit causes both inputs and outputs to be flushed to zero.
return ((bitmask & FZ_BIT) != 0);
}
__fi constexpr FPControlRegister SetDenormalsAreZero(bool daz)
{
if (daz)
bitmask |= FZ_BIT;
else
bitmask &= ~FZ_BIT;
return *this;
}
__fi constexpr bool GetFlushToZero() const
{
// See note in GetDenormalsAreZero().
return ((bitmask & FZ_BIT) != 0);
}
__fi constexpr FPControlRegister SetFlushToZero(bool ftz)
{
if (ftz)
bitmask |= FZ_BIT;
else
bitmask &= ~FZ_BIT;
return *this;
}
__fi constexpr bool operator==(const FPControlRegister& rhs) const { return bitmask == rhs.bitmask; }
__fi constexpr bool operator!=(const FPControlRegister& rhs) const { return bitmask != rhs.bitmask; }
#else
#error Unknown architecture.
#endif
};
/// Helper to back up/restore FPCR.
class FPControlRegisterBackup
{
public:
__fi FPControlRegisterBackup(FPControlRegister new_value)
: m_prev_val(FPControlRegister::GetCurrent())
{
FPControlRegister::SetCurrent(new_value);
}
__fi ~FPControlRegisterBackup()
{
FPControlRegister::SetCurrent(m_prev_val);
}
FPControlRegisterBackup(const FPControlRegisterBackup&) = delete;
FPControlRegisterBackup& operator=(const FPControlRegisterBackup&) = delete;
private:
FPControlRegister m_prev_val;
};
|