1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
|
/*
* blosc.c - bandlimited oscillators
* using minimum phase impulse, step & ramp
* Copyright (c) 2000-2003 by Tom Schouten
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "m_pd.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "../modules/extlib_util.h"
#include "DSPIcomplex.h"
#include "DSPIfilters.h"
#define LPHASOR (8*sizeof(u32)) // the phasor logsize
#define VOICES 8 // the number of waveform voices
#define LLENGTH 6 // the loglength of a fractional delayed basic waveform
#define LOVERSAMPLE 6 // the log of the oversampling factor (nb of fract delayed waveforms)
#define LPAD 1 // the log of the time padding factor (to reduce time aliasing)
#define LTABLE (LLENGTH+LOVERSAMPLE)
#define N (1<<LTABLE)
#define M (1<<(LTABLE+LPAD))
#define S (1<<LOVERSAMPLE)
#define L (1<<LLENGTH)
#define LMASK (L-1)
#define WALPHA 0.1 // windowing alpha (0 = cos -> 1 = rect)
#define CUTOFF 0.8 // fraction of nyquist for impulse cutoff
#define NBPERIODS ((t_float)(L) * CUTOFF / 2.0)
/* sample buffers */
static t_float bli[N]; // band limited impulse
static t_float bls[N]; // band limited step
static t_float blr[N]; // band limited ramp
typedef struct bloscctl
{
int c_index[VOICES]; // array of indices in sample table
t_float c_frac[VOICES]; // array of fractional indices
t_float c_vscale[VOICES]; // array of scale factors
int c_next_voice; // next voice to steal (round robin)
u32 c_phase; // phase of main oscillator
u32 c_phase2; // phase of secondairy oscillator
t_float c_state; // state of the square wave
t_float c_prev_amp; // previous input of comparator
t_float c_phase_inc_scale;
t_float c_scale;
t_float c_scale_update;
DSPIfilterSeries* c_butter; // the series filter
t_symbol *c_waveform;
} t_bloscctl;
typedef struct blosc
{
t_object x_obj;
t_float x_f;
t_bloscctl x_ctl;
} t_blosc;
/* phase converters */
static inline t_float _phase_to_float(u32 p){return ((t_float)p) * (1.0 / 4294967296.0);}
static inline u32 _float_to_phase(t_float f){return ((u32)(f * 4294967296.0)) & ~(S-1);}
/* flat table: better for linear interpolation */
static inline t_float _play_voice_lint(t_float *table, int *index, t_float frac, t_float scale)
{
int i = *index;
/* perform linear interpolation */
t_float f = (((1.0 - frac) * table[i]) + (table[i+1] * frac)) * scale;
/* increment phase index if next 2 elements will still be inside table
if not there's no increment and the voice will keep playing the same sample */
i += (((i+S+1) >> LTABLE) ^ 1) << LOVERSAMPLE;
*index = i;
return f;
}
/* get one sample from the bandlimited discontinuity wavetable playback syth */
static inline t_float _get_bandlimited_discontinuity(t_bloscctl *ctl, t_float *table)
{
t_float sum = 0.0;
int i;
/* sum all voices */
for (i=0; i<VOICES; i++){
sum += _play_voice_lint(table, ctl->c_index+i, ctl->c_frac[i], ctl->c_vscale[i]);
}
return sum;
}
/* update waveplayers on zero cross */
static void _bang_comparator(t_bloscctl *ctl, t_float prev, t_float curr)
{
/* check for sign change */
if ((prev * curr) < 0.0){
int voice;
/* determine the location of the discontinuity (in oversampled coordiates
using linear interpolation */
t_float f = (t_float)S * curr / (curr - prev);
/* get the offset in the oversample table */
u32 table_index = (u32)f;
/* determine the fractional part (in oversampled coordinates)
for linear interpolation */
t_float table_frac_index = f - (t_float)table_index;
/* set state (+ or -) */
ctl->c_state = (curr > 0.0) ? 0.5 : -0.5;
/* steal the oldest voice */
voice = ctl->c_next_voice++;
ctl->c_next_voice &= VOICES-1;
/* initialize the new voice index and interpolation fraction */
ctl->c_index[voice] = table_index;
ctl->c_frac[voice] = table_frac_index;
ctl->c_vscale[voice] = -ctl->c_scale * 2.0 * ctl->c_state;
}
}
/* advance phasor and update waveplayers on phase wrap */
static void _bang_phasor(t_bloscctl *ctl, t_float freq)
{
u32 phase = ctl->c_phase;
u32 phase_inc;
u32 oldphase;
int voice;
t_float scale = ctl->c_scale;
/* get increment */
t_float inc = freq * ctl->c_phase_inc_scale;
/* calculate new phase
the increment (and the phase) should be a multiple of S */
if (inc < 0.0) inc = -inc;
phase_inc = ((u32)inc) & ~(S-1);
oldphase = phase;
phase += phase_inc;
/* check for phase wrap */
if (phase < oldphase){
u32 phase_inc_decimated = phase_inc >> LOVERSAMPLE;
u32 table_index;
u32 table_phase;
/* steal the oldest voice if we have a phase wrap */
voice = ctl->c_next_voice++;
ctl->c_next_voice &= VOICES-1;
/* determine the location of the discontinuity (in oversampled coordinates)
which is S * (new phase) / (increment) */
table_index = phase / phase_inc_decimated;
/* determine the fractional part (in oversampled coordinates)
for linear interpolation */
table_phase = phase - (table_index * phase_inc_decimated);
/* use it to initialize the new voice index and interpolation fraction */
ctl->c_index[voice] = table_index;
ctl->c_frac[voice] = (t_float)table_phase / (t_float)phase_inc_decimated;
ctl->c_vscale[voice] = scale;
scale = scale * ctl->c_scale_update;
}
/* save state */
ctl->c_phase = phase;
ctl->c_scale = scale;
}
/* the 2 oscillator version:
the second osc can reset the first osc's phase (hence it determines the pitch)
the first osc determines the waveform */
static void _bang_hardsync_phasor(t_bloscctl *ctl, t_float freq, t_float freq2)
{
u32 phase = ctl->c_phase;
u32 phase2 = ctl->c_phase2;
u32 phase_inc;
u32 phase_inc2;
u32 oldphase;
u32 oldphase2;
int voice;
t_float scale = ctl->c_scale;
/* get increment */
t_float inc = freq * ctl->c_phase_inc_scale;
t_float inc2 = freq2 * ctl->c_phase_inc_scale;
/* calculate new phases
the increment (and the phase) should be a multiple of S */
/* save previous phases */
oldphase = phase;
oldphase2 = phase2;
/* update second osc */
if (inc2 < 0.0) inc2 = -inc2;
phase_inc2 = ((u32)inc2) & ~(S-1);
phase2 += phase_inc2;
/* update first osc (freq should be >= freq of sync osc */
if (inc < 0.0) inc = -inc;
phase_inc = ((u32)inc) & ~(S-1);
if (phase_inc < phase_inc2) phase_inc = phase_inc2;
phase += phase_inc;
/* check for sync discontinuity (osc 2) */
if (phase2 < oldphase2) {
/* adjust phase depending on the location of the discontinuity in phase2:
phase/phase_inc == phase2/phase_inc2 */
u64 pi = phase_inc >> LOVERSAMPLE;
u64 pi2 = phase_inc2 >> LOVERSAMPLE;
u64 lphase = ((u64)phase2 * pi) / pi2;
phase = lphase & ~(S-1);
}
/* check for phase discontinuity (osc 1) */
if (phase < oldphase){
u32 phase_inc_decimated = phase_inc >> LOVERSAMPLE;
u32 table_index;
u32 table_phase;
t_float stepsize;
/* steal the oldest voice if we have a phase wrap */
voice = ctl->c_next_voice++;
ctl->c_next_voice &= VOICES-1;
/* determine the location of the discontinuity (in oversampled coordinates)
which is S * (new phase) / (increment) */
table_index = phase / phase_inc_decimated;
/* determine the fractional part (in oversampled coordinates)
for linear interpolation */
table_phase = phase - (table_index * phase_inc_decimated);
/* determine the step size
as opposed to saw/impulse waveforms, the step is not always equal to one. it is:
oldphase - phase + phase_inc
but for the unit step this will overflow to zero, so we
reduce the bit depth to prevent overflow */
stepsize = _phase_to_float(((oldphase-phase) >> LOVERSAMPLE)
+ phase_inc_decimated) * (t_float)S;
/* use it to initialize the new voice index and interpolation fraction */
ctl->c_index[voice] = table_index;
ctl->c_frac[voice] = (t_float)table_phase / (t_float)phase_inc_decimated;
ctl->c_vscale[voice] = scale * stepsize;
scale = scale * ctl->c_scale_update;
}
/* save state */
ctl->c_phase = phase;
ctl->c_phase2 = phase2;
ctl->c_scale = scale;
}
static t_int *blosc_perform_hardsync_saw(t_int *w)
{
t_float *freq = (t_float *)(w[3]);
t_float *freq2 = (t_float *)(w[4]);
t_float *out = (t_float *)(w[5]);
t_bloscctl *ctl = (t_bloscctl *)(w[1]);
int n = (int)(w[2]);
int i;
/* set postfilter cutoff */
ctl->c_butter->setButterHP(0.85 * (*freq / sys_getsr()));
while (n--) {
t_float frequency = *freq++;
t_float frequency2 = *freq2++;
/* get the bandlimited discontinuity */
t_float sample = _get_bandlimited_discontinuity(ctl, bls);
/* add aliased sawtooth wave */
sample += _phase_to_float(ctl->c_phase) - 0.5;
/* highpass filter output to remove DC offset and low frequency aliasing */
ctl->c_butter->BangSmooth(sample, sample, 0.05);
/* send to output */
*out++ = sample;
/* advance phasor */
_bang_hardsync_phasor(ctl, frequency2, frequency);
}
return (w+6);
}
static t_int *blosc_perform_saw(t_int *w)
{
t_float *freq = (t_float *)(w[3]);
t_float *out = (t_float *)(w[4]);
t_bloscctl *ctl = (t_bloscctl *)(w[1]);
int n = (int)(w[2]);
int i;
while (n--) {
t_float frequency = *freq++;
/* get the bandlimited discontinuity */
t_float sample = _get_bandlimited_discontinuity(ctl, bls);
/* add aliased sawtooth wave */
sample += _phase_to_float(ctl->c_phase) - 0.5;
/* send to output */
*out++ = sample;
/* advance phasor */
_bang_phasor(ctl, frequency);
}
return (w+5);
}
static t_int *blosc_perform_pulse(t_int *w)
{
t_float *freq = (t_float *)(w[3]);
t_float *out = (t_float *)(w[4]);
t_bloscctl *ctl = (t_bloscctl *)(w[1]);
int n = (int)(w[2]);
int i;
/* set postfilter cutoff */
ctl->c_butter->setButterHP(0.85 * (*freq / sys_getsr()));
while (n--) {
t_float frequency = *freq++;
/* get the bandlimited discontinuity */
t_float sample = _get_bandlimited_discontinuity(ctl, bli);
/* highpass filter output to remove DC offset and low frequency aliasing */
ctl->c_butter->BangSmooth(sample, sample, 0.05);
/* send to output */
*out++ = sample;
/* advance phasor */
_bang_phasor(ctl, frequency);
}
return (w+5);
}
static t_int *blosc_perform_comparator(t_int *w)
{
t_float *amp = (t_float *)(w[3]);
t_float *out = (t_float *)(w[4]);
t_bloscctl *ctl = (t_bloscctl *)(w[1]);
int n = (int)(w[2]);
int i;
t_float prev_amp = ctl->c_prev_amp;
while (n--) {
t_float curr_amp = *amp++;
/* exact zero won't work for zero detection (sic) */
if (curr_amp == 0.0) curr_amp = 0.0000001;
/* get the bandlimited discontinuity */
t_float sample = _get_bandlimited_discontinuity(ctl, bls);
/* add the block wave state */
sample += ctl->c_state;
/* send to output */
*out++ = sample;
/* advance phasor */
_bang_comparator(ctl, prev_amp, curr_amp);
prev_amp = curr_amp;
}
ctl->c_prev_amp = prev_amp;
return (w+5);
}
static void blosc_phase(t_blosc *x, t_float f)
{
x->x_ctl.c_phase = _float_to_phase(f);
x->x_ctl.c_phase2 = _float_to_phase(f);
}
static void blosc_phase1(t_blosc *x, t_float f)
{
x->x_ctl.c_phase = _float_to_phase(f);
}
static void blosc_phase2(t_blosc *x, t_float f)
{
x->x_ctl.c_phase2 = _float_to_phase(f);
}
static void blosc_dsp(t_blosc *x, t_signal **sp)
{
int n = sp[0]->s_n;
/* set sampling rate scaling for phasors */
x->x_ctl.c_phase_inc_scale = 4.0 * ((t_float)(1<<(LPHASOR-2))) / sys_getsr();
/* setup & register the correct process routine depending on the waveform */
/* 2 osc */
if (x->x_ctl.c_waveform == gensym("syncsaw")){
x->x_ctl.c_scale = 1.0;
x->x_ctl.c_scale_update = 1.0;
dsp_add(blosc_perform_hardsync_saw, 5, &x->x_ctl, sp[0]->s_n, sp[0]->s_vec, sp[1]->s_vec, sp[2]->s_vec);
}
/* 1 osc */
else if (x->x_ctl.c_waveform == gensym("pulse")){
x->x_ctl.c_scale = 1.0;
x->x_ctl.c_scale_update = 1.0;
dsp_add(blosc_perform_pulse, 4, &x->x_ctl, sp[0]->s_n, sp[0]->s_vec, sp[1]->s_vec);
}
else if (x->x_ctl.c_waveform == gensym("pulse2")){
x->x_ctl.c_phase_inc_scale *= 2;
x->x_ctl.c_scale = 1.0;
x->x_ctl.c_scale_update = -1.0;
dsp_add(blosc_perform_pulse, 4, &x->x_ctl, sp[0]->s_n, sp[0]->s_vec, sp[1]->s_vec);
}
else if (x->x_ctl.c_waveform == gensym("comparator")){
x->x_ctl.c_scale = 1.0;
x->x_ctl.c_scale_update = 1.0;
dsp_add(blosc_perform_comparator, 4, &x->x_ctl, sp[0]->s_n, sp[0]->s_vec, sp[1]->s_vec);
}
else{
x->x_ctl.c_scale = 1.0;
x->x_ctl.c_scale_update = 1.0;
dsp_add(blosc_perform_saw, 4, &x->x_ctl, sp[0]->s_n, sp[0]->s_vec, sp[1]->s_vec);
}
}
static void blosc_free(t_blosc *x)
{
delete x->x_ctl.c_butter;
}
t_class *blosc_class;
static void *blosc_new(t_symbol *s)
{
t_blosc *x = (t_blosc *)pd_new(blosc_class);
int i;
/* out 1 */
outlet_new(&x->x_obj, gensym("signal"));
/* optional signal inlets */
if (s == gensym("syncsaw")){
inlet_new(&x->x_obj, &x->x_obj.ob_pd, gensym("signal"), gensym("signal"));
}
/* optional phase inlet */
if (s != gensym("comparator")){
inlet_new(&x->x_obj, &x->x_obj.ob_pd, gensym("float"), gensym("phase"));
}
/* create the postfilter */
x->x_ctl.c_butter = new DSPIfilterSeries(3);
/* init oscillators */
for (i=0; i<VOICES; i++) {
x->x_ctl.c_index[i] = N-2;
x->x_ctl.c_frac[i] = 0.0;
}
/* init rest of state data */
blosc_phase(x, 0);
blosc_phase2(x, 0);
x->x_ctl.c_state = 0.0;
x->x_ctl.c_prev_amp = 0.0;
x->x_ctl.c_next_voice = 0;
x->x_ctl.c_scale = 1.0;
x->x_ctl.c_scale_update = 1.0;
x->x_ctl.c_waveform = s;
return (void *)x;
}
/* CLASS DATA INIT (tables) */
/* some vector ops */
/* clear a buffer */
static inline void _clear(t_float *array, int size)
{
memset(array, 0, sizeof(t_float)*size);
}
/* compute complex log */
static inline void _clog(t_float *real, t_float *imag, int size)
{
int k;
for (k=0; k<size; k++){
t_float r = real[k];
t_float i = imag[k];
t_float radius = sqrt(r*r+i*i);
real[k] = log(radius);
imag[k] = atan2(i,r);
}
}
/* compute complex exp */
static inline void _cexp(t_float *real, t_float *imag, int size)
{
int k;
for (k=0; k<size; k++){
t_float r = exp(real[k]);
t_float i = imag[k];
real[k] = r * cos(i);
imag[k] = r * sin(i);
}
}
/* compute fft */
static inline void _fft(t_float *real, t_float *imag, int size)
{
int i;
t_float scale = 1.0 / sqrt((t_float)size);
for (i=0; i<size; i++){
real[i] *= scale;
imag[i] *= scale;
// if (isnan(real[i])) post("fftpanic %d", i);
}
mayer_fft(size, real, imag);
}
/* compute ifft */
static inline void _ifft(t_float *real, t_float *imag, int size)
{
int i;
t_float scale = 1.0 / sqrt((t_float)size);
for (i=0; i<size; i++){
real[i] *= scale;
imag[i] *= scale;
// if (isnan(real[i])) post("ifftpanic %d", i);
}
mayer_ifft(size, real, imag);
}
/* convert an integer index to a phase: [0 -> pi, -pi -> 0] */
static inline t_float _i2theta(int i, int size){
t_float p = 2.0 * M_PI * (t_float)i / (t_float)size;
if (p >= M_PI) p -= 2.0 * M_PI;
return p;
}
/* print matlab array */
static void _printm(t_float *array, char *name, int size)
{
int i;
fprintf(stderr, "%s = [", name);
for (i=0; i<size; i++){
fprintf(stderr, "%f;", array[i]);
}
fprintf(stderr, "];\n");
}
/* store oversampled waveform as decimated chunks */
static void _store_decimated(t_float *dst, t_float *src, t_float scale, int size)
{
int i;
for (i=0; i<size; i++){
int offset = (i % S) * L;
int index = i / S;
dst[offset+index] = scale * src[i];
}
}
/* store waveform as one chunk */
static void _store(t_float *dst, t_float *src, t_float scale, int size)
{
int i;
for (i=0; i<size; i++){
dst[i] = scale * src[i];
}
}
/* create a minimum phase bandlimited impulse */
static void build_tables(void)
{
/* table size = M>=N (time padding to reduce time aliasing) */
/* we work in the complex domain to eliminate the need to avoid
negative spectral components */
t_float real[M];
t_float imag[M];
t_float sum,scale;
int i,j;
/* create windowed sinc */
_clear(imag, M);
real[0] = 1.0;
for (i=1; i<M; i++){
t_float tw = _i2theta(i,M);
t_float ts = tw * NBPERIODS * (t_float)(M) / (t_float)(N);
/* sinc */
real[i] = sin(ts)/ts;
/* blackman window */
real[i] *= 0.42 + 0.5 * (cos(tw)) + 0.08 * (cos(2.0*tw));
//real[i] *= 0.5f * (1.0f + WALPHA) + 0.5f * (1.0f - WALPHA) * (cos(tw));
/* check for nan */
//if (isnan(real[i])) post("sinc NaN panic %d", i);
//if (isinf(real[i])) post("sinc Inf panic %d", i);
}
/* compute cepstrum */
_fft(real, imag, M);
_clog(real, imag, M);
_ifft(real, imag, M);
/* kill anti-causal part (contribution of non minimum phase zeros) */
/* should we kill nyquist too ?? */
for (i=M/2+1; i<M; i++){
real[i] *= 0.0000;
imag[i] *= 0.0000;
}
/* compute inverse cepstrum */
_fft(real, imag, M);
_cexp(real, imag, M);
_ifft(real, imag, M);
/* from here on, discard the padded part [N->M-1]
and work with the first N samples */
/* normalize impulse (integral = 1) */
sum = 0.0;
for (i=0; i<N; i++){sum += real[i];}
scale = 1.0 / sum;
for (i=0; i<N; i++){real[i] *= scale;}
/* store bli table */
_store(bli, real, (t_float)S, N);
//_printm(bli, "h", N);
/* integrate impulse and invert to produce a step function
from 1->0 */
sum = 0.0;
for (i=0; i<N; i++){
sum += real[i];
real[i] = (1.0 - sum);
}
/* store decimated bls tables */
_store(bls, real, 1.0, N);
}
extern "C"
{
void blosc_tilde_setup(void)
{
//post("blosc~ v0.1");
build_tables();
blosc_class = class_new(gensym("blosc~"), (t_newmethod)blosc_new,
(t_method)blosc_free, sizeof(t_blosc), 0, A_DEFSYMBOL, A_NULL);
CLASS_MAINSIGNALIN(blosc_class, t_blosc, x_f);
class_addmethod(blosc_class, (t_method)blosc_dsp, gensym("dsp"), A_NULL);
class_addmethod(blosc_class, (t_method)blosc_phase, gensym("phase"), A_FLOAT, A_NULL);
class_addmethod(blosc_class, (t_method)blosc_phase2, gensym("phase2"), A_FLOAT, A_NULL);
}
}
|