1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
|
/*
* fdn.c - a feedback delay network (reverb tail)
* using a housholder reflection feedback matrix (In - 2/n 11T)
* Copyright (c) 2000-2003 by Tom Schouten
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/* TODO: CLEAN UP THIS MESS
add delay time generation code
add prime calculation routine (for prime delay line lengths)
add more diffuse feedback matrix (hadamard)
check filtering code
*/
#include "extlib_util.h"
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#define FDN_MIN_DECAY_TIME .01
/*
#define NBPRIMES
int prime[NBPRIMES];
static int isprime(int n)
{
int i=1;
int d,m,p;
while(1){
p = prime[i++];
m = n % p;
if (m == 0) return 0; // it is a prime
d = n / p;
if (d < p) return 1; // it is not a prime
}
}
static int initprimes(void)
{
int i, curprime;
prime[0] = 1;
prime[1] = 2;
curprime = 3;
for(i=2; i<NBPRIMES; i++){
while (!isprime(curprime)) curprime++;
prime[i] = curprime;
//printf("%d, ", curprime);
curprime++;
}
printf("\n");
return 0;
}
*/
//static int find_nearest_prime(int n){ return n;}
typedef struct fdnctl
{
int c_order; /* veelvoud van 4 */
int c_maxorder;
t_float c_leak;
t_float c_input;
t_float c_output;
t_float *c_buf;
t_float *c_gain_in;
t_float *c_gain_state;
t_float c_timehigh;
t_float c_timelow;
int *c_tap; /* cirular feed: N+1 pointers: 1 read, (N-1)r/w, 1 write */
t_float *c_length; /* delay lengths in ms */
int c_bufsize;
t_float c_fsample;
t_float *c_vector[2];
t_float *c_vectorbuffer;
int c_curvector;
} t_fdnctl;
typedef struct fdn
{
t_object x_obj;
t_float x_f;
t_fdnctl x_ctl;
} t_fdn;
static void fdn_order(t_fdn *x, int order){
if (order > x->x_ctl.c_maxorder) {
post("fdn: this should not happen (panic!) order %d "
"is larger than maxorder %d:",
order, x->x_ctl.c_maxorder );
exit(1);
}
x->x_ctl.c_order = order;
x->x_ctl.c_leak = -2./ order;
x->x_ctl.c_input = 1./ sqrt(order); //????????????????
}
static void fdn_print(t_fdn *x)
{
int i;
fprintf(stderr, "fdn: delay coefficients (ms)\n");
for (i=0;i<x->x_ctl.c_order;i++) {
fprintf(stderr, "%f ", x->x_ctl.c_length[i]);
}
fprintf(stderr, "\n");
}
static void fdn_reset(t_fdn *x)
{
int i;
if (x->x_ctl.c_buf)
memset(x->x_ctl.c_buf, 0, x->x_ctl.c_bufsize
* sizeof(t_float));
if (x->x_ctl.c_vectorbuffer)
memset(x->x_ctl.c_vectorbuffer,
0, x->x_ctl.c_maxorder * 2 * sizeof(t_float));
}
static t_int *fdn_perform(t_int *w)
{
t_float *in = (t_float *)(w[3]);
t_float *outr = (t_float *)(w[4]);
t_float *outl = (t_float *)(w[5]);
t_fdnctl *ctl = (t_fdnctl *)(w[1]);
int n = (int)(w[2]);
t_float input = ctl->c_input;
t_float output = ctl->c_output;
t_float *gain_in = ctl->c_gain_in;
t_float *gain_state = ctl->c_gain_state;
int order = ctl->c_order;
int *tap = ctl->c_tap;
t_float *buf = ctl->c_buf;
int mask = ctl->c_bufsize - 1;
int i,j;
t_float x,y,v,left,right,z;
t_float filt_in, filt_last;
t_float *cvec, *lvec;
t_float save;
for(i=0;i<n;i++){
x = *in++;
y = 0;
left = 0;
right = 0;
/* get temporary vector buffers */
cvec = ctl->c_vector[ctl->c_curvector];
lvec = ctl->c_vector[ctl->c_curvector ^ 1];
ctl->c_curvector ^= 1;
/* read input vector + get sum and left/right output*/
for(j=0;j<order;)
{
z = buf[tap[j]];
cvec[j] = z;
y += z;
left += z;
right += z;
j++;
z = buf[tap[j]];
cvec[j] = z;
y += z;
left -= z;
right += z;
j++;
z = buf[tap[j]];
cvec[j] = z;
y += z;
left += z;
right -= z;
j++;
z = buf[tap[j]];
cvec[j] = z;
y += z;
left -= z;
right -= z;
j++;
}
/* write output */
*outl++ = left;
*outr++ = right;
/* y == leak to all inputs */
y *= ctl->c_leak;
/* perform feedback */
/* todo: decouple feedback & permutation */
save = cvec[0];
for (j=0; j<order-1; j++){
cvec[j] = cvec[j+1] + y + x;
}
cvec[order-1] = save + y + x;
/* apply gain + store result vector in delay lines + increment taps*/
tap[0] = (tap[0]+1)&mask;
for(j=0;j<order;j++) {
save = gain_in[j] * cvec[j] + gain_state[j] * lvec[j];
save = IS_DENORMAL(save) ? 0 : save;
cvec[j] = save;
buf[tap[j+1]] = save;
tap[j+1] = (tap[j+1] + 1) & mask;
}
}
return (w+6);
}
static void fdn_dsp(t_fdn *x, t_signal **sp)
{
x->x_ctl.c_fsample = sp[0]->s_sr;
dsp_add(fdn_perform,
5,
&x->x_ctl,
sp[0]->s_n,
sp[0]->s_vec,
sp[1]->s_vec,
sp[2]->s_vec);
}
static void fdn_free(t_fdn *x)
{
if ( x->x_ctl.c_tap) free( x->x_ctl.c_tap);
if ( x->x_ctl.c_length) free( x->x_ctl.c_length);
if ( x->x_ctl.c_gain_in) free( x->x_ctl.c_gain_in);
if ( x->x_ctl.c_gain_state) free( x->x_ctl.c_gain_state);
if ( x->x_ctl.c_buf) free ( x->x_ctl.c_buf);
if ( x->x_ctl.c_vectorbuffer) free ( x->x_ctl.c_vectorbuffer );
}
/*
each delay line is filtered with a first order iir filter:
(gl: dc gain, gh: ny gain)
H(z) = 2 gl gh / (gl + gh - z^-1 (gl - gh))
this results in the difference equation
yk = (2 gl gh ) / (gl + gh) x + (gl - gh) / (gl + gh) yk-1
*/
static void fdn_time(t_fdn *x, t_float timelow, t_float timehigh){
t_float elow, ehigh;
int i;
t_float gainlow, gainhigh, gainscale;
if (timelow < FDN_MIN_DECAY_TIME) timelow = FDN_MIN_DECAY_TIME;
if (timehigh < FDN_MIN_DECAY_TIME) timehigh = FDN_MIN_DECAY_TIME;
elow = -.003 / (timelow);
ehigh = -.003 / (timehigh);
/* setup gains */
for(i=0;i<x->x_ctl.c_order;i++){
gainlow = pow(10, elow * (x->x_ctl.c_length[i]));
gainhigh = pow(10, ehigh * (x->x_ctl.c_length[i]));
gainscale = 1.0f / (gainlow + gainhigh);
x->x_ctl.c_gain_in[i] = 2.0f * gainlow * gainhigh * gainscale;
x->x_ctl.c_gain_state[i] = (gainlow - gainhigh) * gainscale;
}
x->x_ctl.c_timehigh = timehigh;
x->x_ctl.c_timelow = timelow;
}
static void fdn_updatedamping(t_fdn *x)
{
fdn_time(x, x->x_ctl.c_timelow, x->x_ctl.c_timehigh);
}
static void fdn_timelow(t_fdn *x, t_float f){
x->x_ctl.c_timelow = fabs(f);
fdn_updatedamping(x);
}
static void fdn_timehigh(t_fdn *x, t_float f){
x->x_ctl.c_timehigh = fabs(f);
fdn_updatedamping(x);
}
static void fdn_setupdelayline(t_fdn *x){
int sum, t, n;
int mask = x->x_ctl.c_bufsize - 1;
int start = x->x_ctl.c_tap[0];
int *tap = x->x_ctl.c_tap;
t_float *length = x->x_ctl.c_length;
t_float scale = sys_getsr() * .001f;
sum = 0;
tap[0] = (start & mask);
for (t=1; t<= x->x_ctl.c_order; t++){
sum += (int)(length[t-1] * scale);
tap[t]=(start+sum)&mask;
}
if (sum > mask){
post("fdn: warning: not enough delay memory, behaviour "
"is undefined (this could lead to instability...)");
}
}
static void fdn_list (t_fdn *x, t_symbol *s, int argc, t_atom *argv){
int i;
t_float l;
int sum=0;
int order = argc & 0xfffffffc;
if (order < 4) return;
if (order > x->x_ctl.c_maxorder) return;
fdn_order(x, order);
for(i=0; i<order; i++)
if (argv[i].a_type == A_FLOAT) x->x_ctl.c_length[i] = argv[i].a_w.w_float;
fdn_setupdelayline(x);
fdn_updatedamping(x);
}
static void fdn_linear(t_fdn *x, t_float forder, t_float min, t_float max)
{
int order = ((int)forder) & 0xfffffffc;
t_float length, inc;
int i;
if (order < 4) return;
if (order > x->x_ctl.c_maxorder) return;
if (min <= 0) return;
if (max <= 0) return;
inc = (max - min) / (t_float)(order - 1);
length = min;
for (i=0; i<order; i++){
x->x_ctl.c_length[i] = length;
length += inc;
}
fdn_order(x, order);
fdn_setupdelayline(x);
fdn_updatedamping(x);
}
static void fdn_exponential(t_fdn *x, t_float forder, t_float min, t_float max)
{
int order = ((int)forder) & 0xfffffffc;
t_float length, inc;
int i;
if (order < 4) return;
if (order > x->x_ctl.c_maxorder) return;
if (min <= 0) return;
if (max <= 0) return;
inc = pow (max / min, 1.0f / ((t_float)(order - 1)));
length = min;
for (i=0; i<order; i++){
x->x_ctl.c_length[i] = length;
length *= inc;
}
fdn_order(x, order);
fdn_setupdelayline(x);
fdn_updatedamping(x);
}
t_class *fdn_class;
static void *fdn_new(t_floatarg maxiorder, t_floatarg maxibufsize)
{
int order = maxiorder;
int bufround;
t_fdn *x = (t_fdn *)pd_new(fdn_class);
t_float scale = sys_getsr() * .001f;
int bufsize = (int)(scale * maxibufsize);
inlet_new(&x->x_obj, &x->x_obj.ob_pd, gensym("float"), gensym("timelow"));
inlet_new(&x->x_obj, &x->x_obj.ob_pd, gensym("float"), gensym("timehigh"));
outlet_new(&x->x_obj, gensym("signal"));
outlet_new(&x->x_obj, gensym("signal"));
/* init data */
if (order < 4) order = 8;
if (bufsize < 64) bufsize = 65536;
bufround = 1;
while (bufround < bufsize) bufround *= 2;
bufsize = bufround;
post("fdn: maximum nb of delay lines %d, total buffer "
"size %d samples (%f seconds)",
order, bufsize, ((t_float)bufsize) / sys_getsr());
x->x_ctl.c_maxorder = order;
x->x_ctl.c_buf = (t_float *)malloc(sizeof(t_float) * bufsize);
x->x_ctl.c_bufsize = bufsize;
x->x_ctl.c_fsample = sys_getsr();
x->x_ctl.c_tap = (int *)malloc((order + 1) * sizeof(int));
x->x_ctl.c_length = (t_float *)malloc(order * sizeof(t_float));
x->x_ctl.c_gain_in = (t_float *)malloc(order * sizeof(t_float));
x->x_ctl.c_gain_state = (t_float *)malloc(order * sizeof(t_float));
x->x_ctl.c_vectorbuffer = (t_float *)malloc(order * 2 * sizeof(t_float));
memset(x->x_ctl.c_vectorbuffer, 0, order * 2 * sizeof(t_float));
x->x_ctl.c_curvector = 0;
x->x_ctl.c_vector[0] = &x->x_ctl.c_vectorbuffer[0];
x->x_ctl.c_vector[1] = &x->x_ctl.c_vectorbuffer[order];
/* preset */
fdn_order(x,8);
x->x_ctl.c_length[0]= 29.0f;
x->x_ctl.c_length[1]= 31.0f;
x->x_ctl.c_length[2]= 37.0f;
x->x_ctl.c_length[3]= 67.0f;
x->x_ctl.c_length[4]= 82.0f;
x->x_ctl.c_length[5]= 110.0f;
x->x_ctl.c_length[6]= 172.0f;
x->x_ctl.c_length[7]= 211.0f;
fdn_setupdelayline(x);
fdn_time(x, 4, 1);
/* reset delay memory to zero */
fdn_reset(x);
return (void *)x;
}
void fdn_tilde_setup(void)
{
//post("fdn~ v0.1");
fdn_class = class_new(gensym("fdn~"), (t_newmethod)fdn_new,
(t_method)fdn_free, sizeof(t_fdn), 0, A_DEFFLOAT, A_DEFFLOAT, 0);
CLASS_MAINSIGNALIN(fdn_class, t_fdn, x_f);
class_addmethod(fdn_class, (t_method)fdn_print, gensym("print"), 0);
class_addmethod(fdn_class, (t_method)fdn_reset, gensym("reset"), 0);
class_addmethod(fdn_class, (t_method)fdn_timehigh,
gensym("timehigh"), A_DEFFLOAT, 0);
class_addmethod(fdn_class, (t_method)fdn_timelow,
gensym("timelow"), A_DEFFLOAT, 0);
class_addmethod(fdn_class, (t_method)fdn_list, gensym("lines"), A_GIMME, 0);
class_addmethod(fdn_class, (t_method)fdn_dsp, gensym("dsp"), 0);
class_addmethod(fdn_class, (t_method)fdn_linear,
gensym("linear"), A_FLOAT, A_FLOAT, A_FLOAT, 0);
class_addmethod(fdn_class, (t_method)fdn_exponential,
gensym("exponential"), A_FLOAT, A_FLOAT, A_FLOAT, 0);
}
|