1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
|
/*
(c) 2002:cxc@web.fm
randomix: various PRNG's
code taken from: http://remus.rutgers.edu/%7Erhoads/Code/code.html
let's check it out
*/
#include <m_pd.h>
#include <stdlib.h>
#include <math.h>
#define SMALLEST_RANGE .0001
#ifndef RAND_MAX
#define RAND_MAX 2147483647
#endif
static int makeseed(void);
static int rand_random_fl(int);
static int makeseed(void)
{
static unsigned int random1_nextseed = 1489853723;
random1_nextseed = random1_nextseed * 435898247 + 938284287;
return (random1_nextseed & 0x7fffffff);
}
static int rand_random_fl(seed) {
int q;
double state;
/* The following parameters are recommended settings based on research
uncomment the one you want. */
double a = 1389796, m = RAND_MAX;
/* static double a = 950975, m = 2147483647; */
/* static double a = 3467255, m = 21474836472; */
/* static double a = 657618, m = 4294967291; */
/* static double a = 93167, m = 4294967291; */
/* static double a = 1345659, m = 4294967291; */
state = seed;
state *= a;
q = state / m;
state -= q*m;
return state;
}
/* -------------------------- random_fl ------------------------------ */
/* An improved (faster) implementation of the Linear Congruential Generator. Has parameters for 6 separate */
/* linear congruence formulas. These formulas are different than those above because the previous formulas won't work */
/* correctly in this implementation. Also, this method only works if your floating point mantissa has at least 53 bits. */
/* linear congruential generator. Generator x[n+1] = a * x[n] mod m */
/* works if your floating pt. mantissa has at least 53 bits.
faster than other versions */
static t_class *random_fl_class;
typedef struct _random_fl
{
t_object x_obj;
t_float x_f; // lower limit
t_float x_g; // upper limit
unsigned int x_state; // current seed
} t_random_fl;
static void *random_fl_new(t_floatarg f, t_floatarg g)
{
t_random_fl *x = (t_random_fl *)pd_new(random_fl_class);
x->x_f = (f) ? f : 0;
x->x_g = (g) ? g : RAND_MAX;
//post("cxc/randomix.c: lolim: %f - %f, uplim: %f - %f", x->x_f, f, x->x_g, g);
x->x_state = makeseed();
inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_float, gensym("fl1"));
inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_float, gensym("fl2"));
outlet_new(&x->x_obj, &s_float);
return (x);
}
void random_fl_bang(t_random_fl *x)
{
int n = x->x_f;
int q;
double nval;
double m;
m = RAND_MAX;
x->x_state = rand_random_fl(x->x_state);
nval = ((x->x_state / m) * (double)(x->x_g - x->x_f) + (double)x->x_f);
outlet_float(x->x_obj.ob_outlet, nval);
}
void random_fl_low(t_random_fl *x, t_floatarg f)
{
if(f >= x->x_g) {
post("cxc/randomix.c: lower larger than upper, setting to upper - %f = %f",
SMALLEST_RANGE,
x->x_g - SMALLEST_RANGE);
x->x_f = x->x_g - SMALLEST_RANGE;
} else x->x_f = f;
}
void random_fl_upp(t_random_fl *x, t_floatarg f)
{
if(f <= x->x_f) {
post("cxc/randomix.c: upper smaller than lower, setting to lower + %f = %f",
SMALLEST_RANGE,
x->x_f + SMALLEST_RANGE);
x->x_g = x->x_f + SMALLEST_RANGE;
} else x->x_g = f;
}
static void random_fl_seed(t_random_fl *x, float f, float glob)
{
x->x_state = f;
}
void random_fl_setup(void)
{
random_fl_class = class_new(gensym("random_fl"), (t_newmethod)random_fl_new, 0,
sizeof(t_random_fl), 0, A_DEFFLOAT, A_DEFFLOAT, 0);
class_addbang(random_fl_class, random_fl_bang);
class_addmethod(random_fl_class, (t_method)random_fl_low, gensym("fl1"), A_FLOAT, 0);
class_addmethod(random_fl_class, (t_method)random_fl_upp, gensym("fl2"), A_FLOAT, 0);
class_addmethod(random_fl_class, (t_method)random_fl_seed,
gensym("seed"), A_FLOAT, 0);
}
|