1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
|
/* isoWrap~ - an isorhythmic phasor~ wrapper
* Copyright (c) 2005-2023 Edward Kelly
* Forinformaion on usage and distribution, and for a DICLAIMER OF ALL
* WARRANTIES, see the file "LICENSE.txt," in this distribution. */
#ifdef __APPLE__
#include <sys/types.h>
#include <sys/time.h>
#include <sys/math.h>
#endif
#include <stdlib.h>
#include <time.h>
#include <math.h>
#include "m_pd.h"
static t_class *isoWrap_tilde_class;
typedef struct _isoWrap_tilde {
t_object x_obj;
t_float den, num, nuMult, inMult;
t_float increment, off1;
//lcmgcd calculations:
int lcm, gcd, result, b, iMult;
int myBug;
//momentary value adjustments:
int theCycle, k_i, k_s;//, ratioBal, theLimit, overShoot;
t_float theOffset, deNorm;
int resetNextPhase;//, resetNextOffset;
int deNormalize, prevDeN, reNormFlag, waitPhase;// direction;
t_float f_s, f_i, f_o, f_prev;
t_outlet *phOff;
} t_isoWrap_tilde;
void *isoWrap_tilde_new(void)
{
t_isoWrap_tilde *x = (t_isoWrap_tilde *)pd_new(isoWrap_tilde_class);
outlet_new(&x->x_obj, gensym("signal"));
x->phOff = outlet_new(&x->x_obj, &s_float);
x->deNormalize = 0;
x->deNorm = 1;
x->prevDeN = 0;
//x->ratioBal = 0;
x->reNormFlag = 0;
x->f_s = x->f_i = x->f_prev = 0;
x->num = 4;
x->den = 4;
x->lcm = 4;
x->result = 1;
x->b = 1;
x->theCycle = 0;
//x->theLimit = 1;
x->theOffset = 0.0;
x->increment = 0.0;
x->waitPhase = 0;
x->myBug = 0;
return (x);
}
/*static void isoWrap_tilde_floatRes(t_isoWrap_tilde *x, t_floatarg f)
{
if(f > 0 && f < 0.1) x->fRes = f;
else x->fRes = 0;
}*/
void isoWrap_tilde_calculate_lcm(t_isoWrap_tilde *x)
{
int a, b, t;
a = x->result;
b = x->b;
while (b != 0) {
t = b;
b = a % b;
a = t;
}
x->gcd = a;
x->lcm = (x->result*x->b)/a;
}
/* It's definitely harder to overshoot this one,
* since it uses wrapping for values greater than 1 to generate
* the final wrapped signal. But maybe there's no reason to...
*/
//static void isoWrap_tilde_overShoot(t_isoWrap_tilde *x, t_floatarg f)
//{
// if(f != 0.0) x->overShoot = 1;
// else x->overShoot = 0;
//}
void isoWrap_tilde_resetNextPhase(t_isoWrap_tilde *x)
{
x->resetNextPhase = 1;
}
void isoWrap_tilde_deNormalize(t_isoWrap_tilde *x, t_floatarg f)
{
x->prevDeN = x->deNormalize;
x->deNormalize = f == 0 ? 0 : f == 1.0? 1 : f == 2.0 ? 2 : 3;
if(x->deNormalize == 3)
{
x->theCycle = 0;
x->theOffset = 0;
x->reNormFlag = 0;
}
if(x->prevDeN == 3 && x->deNormalize < 3) x->reNormFlag = 1;
}
void isoWrap_tilde_waitPhase(t_isoWrap_tilde *x, t_floatarg f)
{
x->waitPhase = (int)f;
}
void isoWrap_tilde_debug(t_isoWrap_tilde *x, t_floatarg f)
{
x->myBug = f != 0 ? 1 : 0;
}
void isoWrap_tilde_setFraction(t_isoWrap_tilde *x, t_symbol *s, int argc, t_atom *argv)
{
int numIn, denIn;
if(argc == 2)
{
numIn = (int)atom_getfloat(argv);
denIn = (int)atom_getfloat(argv+1);
if(numIn <= 0 || denIn <= 0)
{
pd_error(x, "Numerator and denominator of fraction must be integers > 0!");
}
else
{
//x->ratioBal = x->num > x->den ? 1 : x->den > x->num ? -1 : 0;
x->num = (t_float)numIn;
x->den = (t_float)denIn;
x->result = (int)x->num;
x->b = (int)x->den;
isoWrap_tilde_calculate_lcm(x);
//x->theLimit = x->lcm - 1;
x->nuMult = (t_float)x->lcm / (t_float)x->den;
x->inMult = ((t_float)x->num * x->nuMult) / (t_float)x->lcm;
if(x->myBug)post("x->inMult = %f",x->inMult);
x->deNorm = 1 / x->inMult;
if(x->myBug)post("x->deNorm = %f",x->deNorm);
x->iMult = (int)x->inMult;
x->off1 = x->inMult > (t_float)x->iMult ? 1.0 : 0.0;
x->increment = 1 - ((t_float)x->iMult + x->off1 - x->inMult);
}
}
}
t_int *isoWrap_tilde_perform(t_int *w)
{
t_isoWrap_tilde *x = (t_isoWrap_tilde *)(w[1]);
t_sample *in = (t_sample *)(w[2]);
t_sample *out = (t_sample *)(w[3]);
int n = (int)(w[4]);
while(n--)
{
x->f_i = *in++ * x->inMult;
if(x->f_i < x->f_prev)
{
if(x->waitPhase && x->reNormFlag)
{
x->theCycle = 0;
x->theOffset = 0;
x->reNormFlag = 0;
}
//resetNextPhase and resetNextOffset? need to be dealt with here
else if(x->resetNextPhase)// || x->reNormFlag)
{
x->theCycle = 0;
x->theOffset = 0;
x->resetNextPhase = 0;
}
else if(x->deNormalize == 3 && x->num >= x->den)// || x->reNormFlag)
{
x->theCycle = 0;
x->theOffset = 0;
}
else if(x->deNormalize < 3 || x->num < x->den)// && !x->reNormFlag)
{
x->theCycle++;
x->theCycle = x->theCycle % x->lcm;
x->k_s = (int)((t_float)x->theCycle * x->increment);
x->theOffset = ((t_float)x->theCycle * x->increment) - x->k_s;
if(x->myBug) post("The increment: %f",x->increment);
}
}
x->f_s = x->f_i + x->theOffset;
x->k_i = x->f_s;
if(x->deNormalize < 3 && (!x->waitPhase || !x->reNormFlag))
{
x->f_o = x->f_s - x->k_i;
}
else if(x->deNormalize == 3)
{
if(x->num >= x->den)
{
if(x->f_s < 1.0)
{
x->f_o = x->f_s;
}
else
{
x->f_o = 1.0;
}
}
else if(x->num < x->den)
{
x->f_o = x->f_s - x->k_i;
}
}
else
{
x->f_o = x->f_s - x->k_i;
}
if(x->num >= x->den)
{
if(x->deNormalize >= 2)// && x->num >= x->den)
{
x->f_o = x->f_o * x->deNorm;
}
else if(x->deNormalize == 1)
{
x->f_o = x->f_o * x->inMult;
}
}
else if(x->num < x->den)
{
if(x->deNormalize == 3)
{
x->f_o = x->f_o * x->deNorm;
if(x->f_o > 1.0)
{
x->f_o = 1.0;
}
}
else if(x->deNormalize == 2)
{
x->f_o = x->f_o * x->inMult;
}
else if(x->deNormalize == 1)
{
x->f_o = x->f_o * x->deNorm;
}
}
*out++ = x->f_o;
x->f_prev = x->f_i;
}
outlet_float(x->phOff, x->theOffset);
return(w+5);
}
void isoWrap_tilde_dsp(t_isoWrap_tilde *x, t_signal **sp) {
dsp_add(isoWrap_tilde_perform, 4, x, sp[0]->s_vec, sp[1]->s_vec, sp[0]->s_n);
}
void isoWrap_tilde_setup(void)
{
isoWrap_tilde_class = class_new(gensym("isoWrap~"), (t_newmethod)isoWrap_tilde_new,
0, sizeof(t_isoWrap_tilde), CLASS_DEFAULT, A_DEFFLOAT, 0);
CLASS_MAINSIGNALIN(isoWrap_tilde_class, t_isoWrap_tilde, f_s);
class_addmethod(isoWrap_tilde_class, (t_method)isoWrap_tilde_dsp, gensym("dsp"), A_CANT, 0);
class_addmethod(isoWrap_tilde_class, (t_method)isoWrap_tilde_setFraction, gensym("setFraction"), A_GIMME, 0);
class_addmethod(isoWrap_tilde_class, (t_method)isoWrap_tilde_resetNextPhase, gensym("resetNextPhase"), A_DEFFLOAT, 0);
class_addmethod(isoWrap_tilde_class, (t_method)isoWrap_tilde_deNormalize, gensym("deNormalize"), A_DEFFLOAT, 0);
class_addmethod(isoWrap_tilde_class, (t_method)isoWrap_tilde_debug, gensym("debug"), A_DEFFLOAT, 0);
}
|