1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
|
#include "MSPd.h"
#include "fftease.h"
#if MSP
void *codepend_class;
#endif
#if PD
static t_class *codepend_class;
#endif
#define OBJECT_NAME "codepend~"
/*
Adding -32dB pad for invert option. Also added latency mechanism in
switching from normal to "invert" to avoid glitches from extreme
amplitude disparities.
Made all inlets of type signal (with float options).
Threshold input is now linear, not dB (with Max doing the conversion
if desired).
-EL 10/1/2005
*/
typedef struct _codepend
{
#if MSP
t_pxobject x_obj;
#endif
#if PD
t_object x_obj;
float x_f;
#endif
int R;
int N;
int N2;
int Nw;
int Nw2;
int D;
int i;
int inCount;
int invert;
int *bitshuffle;
float threshold;
float exponent;
float *Wanal;
float *Wsyn;
float *inputOne;
float *inputTwo;
float *Hwin;
float *bufferOne;
float *bufferTwo;
float *channelOne;
float *channelTwo;
float *output;
float mult;
float *trigland;
short connected[8];
short mute;
int overlap;//overlap factor
int winfac;//window factor
int vs;//vector size
int invert_countdown; // delay onset of invert effect to avoid loud glitches
int invert_nextstate;// next state for invert
float invert_pad;
} t_codepend;
/* msp function prototypes */
void *codepend_new(t_symbol *s, int argc, t_atom *argv);
t_int *offset_perform(t_int *w);
t_int *codepend_perform(t_int *w);
void codepend_dsp(t_codepend *x, t_signal **sp, short *count);
void codepend_assist(t_codepend *x, void *b, long m, long a, char *s);
void codepend_dest(t_codepend *x, double f);
void codepend_invert(t_codepend *x, t_floatarg toggle);
void codepend_free(t_codepend *x);
void codepend_mute(t_codepend *x, t_floatarg toggle);
void codepend_fftinfo(t_codepend *x);
void codepend_tilde_setup(void);
void codepend_winfac(t_codepend *x, t_floatarg o);
void codepend_overlap(t_codepend *x, t_floatarg o);
void codepend_init(t_codepend *x, short initialized);
void codepend_pad(t_codepend *x, t_floatarg pad);
#if MSP
void main(void)
{
setup( (struct messlist **) &codepend_class, (void *) codepend_new,
(method)dsp_free, (short) sizeof(t_codepend),
0, A_GIMME, 0);
addmess((method)codepend_dsp, "dsp", A_CANT, 0);
addmess((method)codepend_assist,"assist",A_CANT,0);
addmess((method)codepend_invert,"invert", A_FLOAT, 0);
addmess((method)codepend_mute,"mute", A_FLOAT, 0);
addmess((method)codepend_pad,"pad", A_FLOAT, 0);
addmess((method)codepend_overlap,"overlap", A_FLOAT, 0);
addmess((method)codepend_winfac,"winfac", A_FLOAT, 0);
addmess((method)codepend_fftinfo,"fftinfo", 0);
addfloat((method) codepend_dest);
dsp_initclass();
post("%s %s",OBJECT_NAME,FFTEASE_ANNOUNCEMENT);
}
/* float input handling routine (MSP only)*/
void codepend_dest(t_codepend *x, double df)
{
float f = (float) df;
int inlet = x->x_obj.z_in;
if ( inlet == 2 ) {
x->exponent = f;
}
if ( inlet == 3 ){
/* x->threshold = (float) (pow( 10., (f * .05))); */
x->threshold = f;
}
}
#endif
#if PD
void codepend_tilde_setup(void)
{
codepend_class = class_new(gensym("codepend~"), (t_newmethod)codepend_new,
(t_method)codepend_free ,sizeof(t_codepend), 0,A_GIMME,0);
CLASS_MAINSIGNALIN(codepend_class, t_codepend, x_f);
class_addmethod(codepend_class, (t_method)codepend_dsp, gensym("dsp"), 0);
class_addmethod(codepend_class, (t_method)codepend_assist, gensym("assist"), 0);
class_addmethod(codepend_class, (t_method)codepend_invert, gensym("invert"), A_FLOAT,0);
class_addmethod(codepend_class, (t_method)codepend_mute, gensym("mute"), A_FLOAT,0);
class_addmethod(codepend_class, (t_method)codepend_pad, gensym("pad"), A_FLOAT,0);
class_addmethod(codepend_class, (t_method)codepend_overlap, gensym("overlap"), A_FLOAT,0);
class_addmethod(codepend_class, (t_method)codepend_winfac, gensym("winfac"), A_FLOAT,0);
class_addmethod(codepend_class, (t_method)codepend_fftinfo, gensym("fftinfo"), A_CANT,0);
post("%s %s",OBJECT_NAME,FFTEASE_ANNOUNCEMENT);
}
#endif
void codepend_mute(t_codepend *x, t_floatarg toggle)
{
x->mute = (short)toggle;
// post("mute set to %f, %d",toggle,x->mute);
}
void codepend_overlap(t_codepend *x, t_floatarg o)
{
if(!fftease_power_of_two((int)o)){
error("%f is not a power of two",o);
return;
}
x->overlap = (int)o;
codepend_init(x,1);
}
void codepend_winfac(t_codepend *x, t_floatarg f)
{
if(!fftease_power_of_two((int)f)){
error("%f is not a power of two",f);
return;
}
x->winfac = (int)f;
codepend_init(x,1);
}
void codepend_fftinfo( t_codepend *x )
{
if( ! x->overlap ){
post("zero overlap!");
return;
}
post("%s: FFT size %d, hopsize %d, windowsize %d", OBJECT_NAME, x->N, x->N/x->overlap, x->Nw);
}
void codepend_free(t_codepend *x)
{
#if MSP
dsp_free((t_pxobject *) x);
#endif
free(x->trigland);
free(x->bitshuffle);
free(x->Wanal);
free(x->Wsyn);
free(x->Hwin);
free(x->inputOne);
free(x->inputTwo);
free(x->bufferOne);
free(x->bufferTwo);
free(x->channelOne);
free(x->channelTwo);
free(x->output);
}
void codepend_pad(t_codepend *x, t_floatarg pad)
{
x->invert_pad = pad;
codepend_invert(x,x->invert);//resubmit to invert
}
void codepend_invert(t_codepend *x, t_floatarg toggle)
{
x->invert_nextstate = (short)toggle;
x->invert_countdown = x->overlap; // delay effect for "overlap" vectors
if(x->invert_nextstate){ // lower gain immediately; delay going to invert
x->mult = (1. / (float) x->N) * x->invert_pad;
} else {
x->invert = 0; //immediately turn off invert; delay raising gain
}
}
void codepend_assist (t_codepend *x, void *b, long msg, long arg, char *dst)
{
if (msg == 1) {
switch (arg) {
case 0: sprintf(dst,"(signal) Input One");break;
case 1: sprintf(dst,"(signal) Input Two"); break;
case 2: sprintf(dst,"(signal/float) Scaling Exponent"); break;
case 3: sprintf(dst,"(signal/float) Inverse Threshold"); break;
}
}
else {
if (msg == 2)
sprintf(dst,"(signal) Output");
}
}
void *codepend_new(t_symbol *s, int argc, t_atom *argv)
{
#if MSP
t_codepend *x = (t_codepend *) newobject(codepend_class);
dsp_setup((t_pxobject *)x,4);
outlet_new((t_pxobject *)x, "signal");
// x->x_obj.z_misc |= Z_NO_INPLACE; // probably not needed
#endif
#if PD
t_codepend *x = (t_codepend *)pd_new(codepend_class);
/* add three additional signal inlets */
inlet_new(&x->x_obj, &x->x_obj.ob_pd,gensym("signal"), gensym("signal"));
inlet_new(&x->x_obj, &x->x_obj.ob_pd,gensym("signal"), gensym("signal"));
inlet_new(&x->x_obj, &x->x_obj.ob_pd,gensym("signal"), gensym("signal"));
outlet_new(&x->x_obj, gensym("signal"));
#endif
/* optional arguments: scaling exponent, threshold (now linear), overlap, winfac */
x->exponent = atom_getfloatarg(0,argc,argv);
x->threshold = atom_getfloatarg(1,argc,argv);
x->overlap = atom_getfloatarg(2,argc,argv);
x->winfac = atom_getfloatarg(3,argc,argv);
/*
x->threshold = (float) pow(10.0,(x->threshold * .05));
*/
/* sanity check */
if(x->exponent < 0.25)
x->exponent = 0.25;
if(!fftease_power_of_two(x->overlap)){
x->overlap = 4;
}
if(!fftease_power_of_two(x->winfac)){
x->winfac = 1;
}
x->vs = sys_getblksize();
x->R = sys_getsr();
codepend_init(x,0);
return (x);
}
void codepend_init(t_codepend *x, short initialized)
{
int i;
x->D = x->vs;
x->N = x->D * x->overlap;
x->Nw = x->N * x->winfac;
limit_fftsize(&x->N,&x->Nw,OBJECT_NAME);
x->N2 = (x->N)>>1;
x->Nw2 = (x->Nw)>>1;
x->inCount = -(x->Nw);
x->mult = 1. / (float) x->N;
if(!initialized){
x->invert_pad = 0.025; // -32 dB
x->invert_countdown = 0;
x->mute = 0;
x->invert = 0;
x->Wanal = (float *) calloc(MAX_Nw, sizeof(float));
x->Wsyn = (float *) calloc(MAX_Nw, sizeof(float));
x->Hwin = (float *) calloc(MAX_Nw, sizeof(float));
x->inputOne = (float *) calloc(MAX_Nw, sizeof(float));
x->inputTwo = (float *) calloc(MAX_Nw, sizeof(float));
x->bufferOne = (float *) calloc(MAX_N, sizeof(float));
x->bufferTwo = (float *) calloc(MAX_N, sizeof(float));
x->channelOne = (float *) calloc(MAX_N+2, sizeof(float));
x->channelTwo = (float *) calloc(MAX_N+2, sizeof(float));
x->output = (float *) calloc(MAX_Nw, sizeof(float));
x->bitshuffle = (int *) calloc(MAX_N * 2, sizeof(int));
x->trigland = (float *) calloc(MAX_N * 2, sizeof(float));
}
memset((char *)x->inputOne,0,x->Nw);
memset((char *)x->inputTwo,0,x->Nw);
memset((char *)x->output,0,x->Nw);
memset((char *)x->bufferOne,0,x->N);
memset((char *)x->bufferTwo,0,x->N);
memset((char *)x->channelOne,0,(x->N+2));
memset((char *)x->channelTwo,0,(x->N+2));
if(x->invert){
x->mult *= x->invert_pad;
}
init_rdft( x->N, x->bitshuffle, x->trigland);
makehanning( x->Hwin, x->Wanal, x->Wsyn, x->Nw, x->N, x->D, 1);
}
t_int *codepend_perform(t_int *w)
{
int
i,j,
inCount,
R,
N,
N2,
D,
Nw,
invert = 0,
even, odd,
*bitshuffle;
float maxamp,
threshold = 1.,
mult,
exponent,
a1, b1,
a2, b2,
*inputOne,
*inputTwo,
*bufferOne,
*bufferTwo,
*output,
*Wanal,
*Wsyn,
*channelOne,
*channelTwo,
*trigland;
/* get our inlets and outlets */
t_codepend *x = (t_codepend *) (w[1]);
t_float *inOne = (t_float *)(w[2]);
t_float *inTwo = (t_float *)(w[3]);
t_float *vec_exponent = (t_float *)(w[4]);
t_float *vec_threshold = (t_float *)(w[5]);
t_float *out = (t_float *)(w[6]);
t_int n = w[7];
short *connected = x->connected;
/* dereference structure */
if(connected[2])
x->exponent = *vec_exponent;
if(connected[3]){
x->threshold = *vec_threshold;
/*
x->threshold = (float) (pow( 10., (x->threshold * .05)));
*/
}
if(x->mute){
while(n--)
*out++ = 0.0;
return w+8;
}
// do countdown
if(x->invert_countdown > 0){
if(x->invert) { // we
} else {
}
--(x->invert_countdown);
if(! x->invert_countdown){ // countdown just ended
if(x->invert_nextstate){ // moving to invert (gain is already down)
x->invert = x->invert_nextstate;
} else { // invert is already off - now reset gain
x->mult = 1. / (float) x->N;
}
}
}
inputOne = x->inputOne;
inputTwo = x->inputTwo;
bufferOne = x->bufferOne;
bufferTwo = x->bufferTwo;
inCount = x->inCount;
R = x->R;
N = x->N;
N2 = x->N2;
D = x->D;
Nw = x->Nw;
Wanal = x->Wanal;
Wsyn = x->Wsyn;
output = x->output;
channelOne = x->channelOne;
channelTwo = x->channelTwo;
bitshuffle = x->bitshuffle;
trigland = x->trigland;
mult = x->mult;
invert = x->invert;
exponent = x->exponent;
if ( x->threshold != 0. )
threshold = x->threshold;
/* fill our retaining buffers */
inCount += D;
for ( j = 0 ; j < Nw - D ; j++ ) {
inputOne[j] = inputOne[j+D];
inputTwo[j] = inputTwo[j+D];
}
for ( j = Nw - D; j < Nw; j++ ) {
inputOne[j] = *inOne++;
inputTwo[j] = *inTwo++;
}
/* apply hamming window and fold our window buffer into the fft buffer */
fold( inputOne, Wanal, Nw, bufferOne, N, inCount );
fold( inputTwo, Wanal, Nw, bufferTwo, N, inCount );
/* do an fft */
rdft( N, 1, bufferOne, bitshuffle, trigland );
rdft( N, 1, bufferTwo, bitshuffle, trigland );
/* convert to polar coordinates from complex values */
if (invert) {
for ( i = 0; i <= N2; i++ ) {
float mag_1, mag_2;
odd = ( even = i<<1 ) + 1;
a1 = ( i == N2 ? *(bufferOne+1) : *(bufferOne+even) );
b1 = ( i == 0 || i == N2 ? 0. : *(bufferOne+odd) );
a2 = ( i == N2 ? *(bufferTwo+1) : *(bufferTwo+even) );
b2 = ( i == 0 || i == N2 ? 0. : *(bufferTwo+odd) );
/* complex division */
mag_1 = hypot( a1, b1 );
mag_2 = hypot( a2, b2 );
if ( mag_2 > threshold )
*(channelOne+even) = mag_1 / mag_2;
else
*(channelOne+even) = mag_1 / threshold;
if ( mag_1 != 0. && mag_2 != 0. )
*(channelOne+odd) = atan2( b2, a2 ) - atan2( b1, a1 );
else
*(channelOne+odd) = 0.;
/* raise resulting magnitude to a desired power */
*(channelOne+even) = pow( *(channelOne+even), exponent );
}
}
else {
for ( i = 0; i <= N2; i++ ) {
float f_real, f_imag;
odd = ( even = i<<1 ) + 1;
a1 = ( i == N2 ? *(bufferOne+1) : *(bufferOne+even) );
b1 = ( i == 0 || i == N2 ? 0. : *(bufferOne+odd) );
a2 = ( i == N2 ? *(bufferTwo+1) : *(bufferTwo+even) );
b2 = ( i == 0 || i == N2 ? 0. : *(bufferTwo+odd) );
/* complex multiply */
f_real = (a1 * a2) - (b1 * b2);
f_imag = (a1 * b2) + (b1 * a2);
*(channelOne+even) = hypot( f_real, f_imag );
*(channelOne+odd) = -atan2( f_imag, f_real );
/* raise resulting magnitude to a desired power */
*(channelOne+even) = pow( *(channelOne+even), exponent );
}
}
/* convert back to complex form, read for the inverse fft */
for ( i = 0; i <= N2; i++ ) {
odd = ( even = i<<1 ) + 1;
*(bufferOne+even) = *(channelOne+even) * cos( *(channelOne+odd) );
if ( i != N2 )
*(bufferOne+odd) = -(*(channelOne+even)) * sin( *(channelOne+odd) );
}
/* do an inverse fft */
rdft( N, -1, bufferOne, bitshuffle, trigland );
/* dewindow our result */
overlapadd( bufferOne, N, Wsyn, output, Nw, inCount);
/* set our output and adjust our retaining output buffer */
for ( j = 0; j < D; j++ )
*out++ = output[j] * mult;
for ( j = 0; j < Nw - D; j++ )
output[j] = output[j+D];
for ( j = Nw - D; j < Nw; j++ )
output[j] = 0.;
/* restore state variables */
x->inCount = inCount % Nw;
return (w+8);
}
void codepend_dsp(t_codepend *x, t_signal **sp, short *count)
{
long i;
#if MSP
for( i = 0; i < 4; i++ ){
x->connected[i] = count[i];
}
#endif
/* signal is always connected in Pd */
#if PD
for( i = 0; i < 4; i++ ){
x->connected[i] = 1;
}
#endif
/* reinitialize if vector size or sampling rate has been changed */
if(x->vs != sp[0]->s_n || x->R != sp[0]->s_sr){
x->vs = sp[0]->s_n;
x->R = sp[0]->s_sr;
codepend_init(x,1);
}
dsp_add(codepend_perform, 7, x,
sp[0]->s_vec,
sp[1]->s_vec,
sp[2]->s_vec,
sp[3]->s_vec,
sp[4]->s_vec,
sp[0]->s_n);
}
|