File: freeverb~.c

package info (click to toggle)
pd-freeverb 1.2-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster, sid
  • size: 168 kB
  • sloc: ansic: 674; makefile: 503
file content (867 lines) | stat: -rw-r--r-- 26,205 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
/* -------------------------- freeverb~ --------------------------------------- */
/*                                                                              */
/* Tilde object that implements the Schroeder/Moorer reverb model.              */
/* Written by Olaf Matthes <olaf.matthes@gmx.de>.                               */
/* Get source at http://www.akustische-kunst.org/                               */
/*                                                                              */
/* This program is free software; you can redistribute it and/or                */
/* modify it under the terms of the GNU General Public License                  */
/* as published by the Free Software Foundation; either version 2               */
/* of the License, or (at your option) any later version.                       */
/*                                                                              */
/* This program is distributed in the hope that it will be useful,              */
/* but WITHOUT ANY WARRANTY; without even the implied warranty of               */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the                */
/* GNU General Public License for more details.                                 */
/*                                                                              */
/* You should have received a copy of the GNU General Public License            */
/* along with this program; if not, write to the Free Software                  */
/* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.  */
/*                                                                              */
/* Based on PureData by Miller Puckette and others.                             */
/* Also compiles for Max/MSP.                                                   */
/*                                                                              */
/* ---------------------------------------------------------------------------- */

#ifdef _MSC_VER
#pragma warning( disable : 4091 )
#pragma warning( disable : 4244 )
#pragma warning( disable : 4305 )
#define inline __inline
#endif

#ifdef PD
#include "m_pd.h"
#else	// Max/MSP
#include "ext.h"
#include "z_dsp.h"
#define t_floatarg double
#endif

#include <math.h>
#include <string.h>

#define LOGTEN 2.302585092994

#define	numcombs		8
#define	numallpasses	4
#define	muted			0
#define	fixedgain		0.015
#define scalewet		3.0
#define scaledry		2.0
#define scaledamp		0.4
#define scaleroom		0.28
#define offsetroom		0.7
#define initialroom		0.5
#define initialdamp		0.5
#define initialwet		1.0/scalewet
#define initialdry		0.0
#define initialwidth	1.0
#define initialmode		0
#define initialbypass   0
#define freezemode		0.5
#define	stereospread	23

/* these values assume 44.1KHz sample rate
   they will probably be OK for 48KHz sample rate
   but would need scaling for 96KHz (or other) sample rates.
   the values were obtained by listening tests.                */
static const int combtuningL[numcombs]
                     = { 1116, 1188, 1277, 1356, 1422, 1491, 1557, 1617 };
static const int combtuningR[numcombs]
                     = { 1116+stereospread, 1188+stereospread, 1277+stereospread, 1356+stereospread,
					     1422+stereospread, 1491+stereospread, 1557+stereospread, 1617+stereospread };

static const int allpasstuningL[numallpasses]
                     = { 556, 441, 341, 225 };
static const int allpasstuningR[numallpasses]
                     = { 556+stereospread, 441+stereospread, 341+stereospread, 225+stereospread };

static char *version = "freeverb~ v1.2";

#ifdef PD
static t_class *freeverb_class;

typedef struct _freeverb
{
    t_object x_obj;
#else	// Max/MSP
void *freeverb_class;

typedef struct _freeverb
{
	t_pxobject x_obj;
#endif
		/* freeverb stuff */
	t_float	x_gain;
	t_float	x_roomsize,x_roomsize1;
	t_float	x_damp,x_damp1;
	t_float	x_wet,x_wet1,x_wet2;
	t_float	x_dry;
	t_float	x_width;
	t_float	x_mode;
	t_float x_bypass;
	int     x_skip;

	t_float	x_allpassfeedback;			/* feedback of allpass filters */
	t_float	x_combfeedback;				/* feedback of comb filters */
	t_float x_combdamp1;
	t_float x_combdamp2;
	t_float x_filterstoreL[numcombs];	/* stores last sample value */
	t_float x_filterstoreR[numcombs];

		/* buffers for the combs */
	t_float	*x_bufcombL[numcombs];
	t_float	*x_bufcombR[numcombs];
	int x_combidxL[numcombs];
	int x_combidxR[numcombs];

		/* buffers for the allpasses */
	t_float	*x_bufallpassL[numallpasses];
	t_float	*x_bufallpassR[numallpasses];
	int x_allpassidxL[numallpasses];
	int x_allpassidxR[numallpasses];

		/* we'll make local copies adjusted to fit our sample rate */
	int x_combtuningL[numcombs];
	int x_combtuningR[numcombs];

	int x_allpasstuningL[numallpasses];
	int x_allpasstuningR[numallpasses];

#ifdef PD
	t_float x_float;
#endif
} t_freeverb;

//#ifndef IRIX
//#define IS_DENORM_FLOAT(v)              ((((*(unsigned long*)&(v))&0x7f800000)==0)&&((v)!=0.f))
//#define IS_NAN_FLOAT(v)                 (((*(unsigned long*)&(v))&0x7f800000)==0x7f800000)
//#define IS_DENORM_NAN_FLOAT(v)          (IS_DENORM_FLOAT(v)||IS_NAN_FLOAT(v))
//#define FIX_DENORM_NAN_FLOAT(v)         ((v)=IS_DENORM_NAN_FLOAT(v)?0.f:(v))
//#else
//#define FIX_DENORM_NAN_FLOAT(v);
//#endif

typedef union ulf
{
    unsigned long   ul;
    float           f;
} ulf;

static inline float fix_denorm_nan_float(float v);

static inline float fix_denorm_nan_float(float v)
{
#ifndef IRIX
    ulf u;

    u.f = v;
    if ((((u.ul & 0x7f800000) == 0L) && (u.f != 0.f)) || ((u.ul & 0x7f800000) == 0x7f800000))
        /* if the float is denormal or NaN, return 0.0 */
        return 0.0f;
#endif //IRIX
    return v;
}

/* we need prototypes for Mac for everything */
static void comb_setdamp(t_freeverb *x, t_floatarg val);
static void comb_setfeedback(t_freeverb *x, t_floatarg val);
static inline t_float comb_processL(t_freeverb *x, int filteridx, t_float input);
static inline t_float comb_processR(t_freeverb *x, int filteridx, t_float input);
static void allpass_setfeedback(t_freeverb *x, t_floatarg val);
static inline t_float allpass_processL(t_freeverb *x, int filteridx, t_float input);
static inline t_float allpass_processR(t_freeverb *x, int filteridx, t_float input);
t_int *freeverb_perform(t_int *w);
t_int *freeverb_perf8(t_int *w);
static void dsp_add_freeverb(t_freeverb *x, t_sample *in1, t_sample *in2, t_sample *out1, t_sample *out2, int n);
void freeverb_dsp(t_freeverb *x, t_signal **sp);
static void freeverb_update(t_freeverb *x);
static void freeverb_setroomsize(t_freeverb *x, t_floatarg value);
static float freeverb_getroomsize(t_freeverb *x);
static void freeverb_setdamp(t_freeverb *x, t_floatarg value);
static float freeverb_getdamp(t_freeverb *x);
static void freeverb_setwet(t_freeverb *x, t_floatarg value);
static float freeverb_getwet(t_freeverb *x);
static void freeverb_setdry(t_freeverb *x, t_floatarg value);
static float freeverb_getdry(t_freeverb *x);
static void freeverb_setwidth(t_freeverb *x, t_floatarg value);
static float freeverb_getwidth(t_freeverb *x);
static void freeverb_setmode(t_freeverb *x, t_floatarg value);
static float freeverb_getmode(t_freeverb *x);
static void freeverb_setbypass(t_freeverb *x, t_floatarg value);
static void freeverb_mute(t_freeverb *x);
static float freeverb_getdb(float f);
static void freeverb_print(t_freeverb *x);
#ifdef PD
void freeverb_tilde_setup(void);
#endif
#ifndef PD
void freeverb_assist(t_freeverb *x, void *b, long m, long a, char *s);
#endif
static void freeverb_free(t_freeverb *x);
void *freeverb_new(t_floatarg val);

/* -------------------- comb filter stuff ----------------------- */
static void comb_setdamp(t_freeverb *x, t_floatarg val) 
{
	x->x_combdamp1 = val; 
	x->x_combdamp2 = 1-val;
}

static void comb_setfeedback(t_freeverb *x, t_floatarg val) 
{
	x->x_combfeedback = val;
}

// Big to inline - but crucial for speed
static inline t_float comb_processL(t_freeverb *x, int filteridx, t_float input)
{
	t_float output;
	int bufidx = x->x_combidxL[filteridx];

	output = x->x_bufcombL[filteridx][bufidx];
    //FIX_DENORM_NAN_FLOAT(output);
    fix_denorm_nan_float(output);

    x->x_filterstoreL[filteridx] = (output*x->x_combdamp2) + (x->x_filterstoreL[filteridx]*x->x_combdamp1);
    //FIX_DENORM_NAN_FLOAT(x->x_filterstoreL[filteridx]);
    fix_denorm_nan_float(x->x_filterstoreL[filteridx]);

	x->x_bufcombL[filteridx][bufidx] = input + (x->x_filterstoreL[filteridx]*x->x_combfeedback);

	if(++x->x_combidxL[filteridx] >= x->x_combtuningL[filteridx]) x->x_combidxL[filteridx] = 0;

	return output;
}

static inline t_float comb_processR(t_freeverb *x, int filteridx, t_float input)
{
	t_float output;
	int bufidx = x->x_combidxR[filteridx];

	output = x->x_bufcombR[filteridx][bufidx];
    //FIX_DENORM_NAN_FLOAT(output);
    fix_denorm_nan_float(output);

	x->x_filterstoreR[filteridx] = (output*x->x_combdamp2) + (x->x_filterstoreR[filteridx]*x->x_combdamp1);
    //FIX_DENORM_NAN_FLOAT(x->x_filterstoreR[filteridx]);
    fix_denorm_nan_float(x->x_filterstoreR[filteridx]);

	x->x_bufcombR[filteridx][bufidx] = input + (x->x_filterstoreR[filteridx]*x->x_combfeedback);

	if(++x->x_combidxR[filteridx] >= x->x_combtuningR[filteridx]) x->x_combidxR[filteridx] = 0;

	return output;
}

/* -------------------- allpass filter stuff ----------------------- */
static void allpass_setfeedback(t_freeverb *x, t_floatarg val) 
{
	x->x_allpassfeedback = val;
}

// Big to inline - but crucial for speed
static inline t_float allpass_processL(t_freeverb *x, int filteridx, t_float input)
{
	t_float output;
	t_float bufout;
	int bufidx = x->x_allpassidxL[filteridx];
	
	bufout = (t_float)x->x_bufallpassL[filteridx][bufidx];
    //FIX_DENORM_NAN_FLOAT(bufout);
    fix_denorm_nan_float(bufout);
	
	output = -input + bufout;
	x->x_bufallpassL[filteridx][bufidx] = input + (bufout*x->x_allpassfeedback);

	if(++x->x_allpassidxL[filteridx] >= x->x_allpasstuningL[filteridx])
		x->x_allpassidxL[filteridx] = 0;

	return output;
}

static inline t_float allpass_processR(t_freeverb *x, int filteridx, t_float input)
{
	t_float output;
	t_float bufout;
	int bufidx = x->x_allpassidxR[filteridx];
	
	bufout = (t_float)x->x_bufallpassR[filteridx][bufidx];
    //FIX_DENORM_NAN_FLOAT(bufout);
    fix_denorm_nan_float(bufout);
	
	output = -input + bufout;
	x->x_bufallpassR[filteridx][bufidx] = input + (bufout*x->x_allpassfeedback);

	if(++x->x_allpassidxR[filteridx] >= x->x_allpasstuningR[filteridx])
		x->x_allpassidxR[filteridx] = 0;

	return output;
}

/* -------------------- general DSP stuff ----------------------- */
t_int *freeverb_perform(t_int *w)
{
	// assign from parameters
    t_freeverb *x = (t_freeverb *)(w[1]);
    t_float *in1 = (t_float *)(w[2]);
    t_float *in2 = (t_float *)(w[3]);
    t_float *out1 = (t_float *)(w[4]);
    t_float *out2 = (t_float *)(w[5]);
    int n = (int)(w[6]);
	int i;
	t_float outL, outR, inL, inR, input;
    
#ifndef PD
    if (x->x_obj.z_disabled)
    	goto out;    	 
#endif

	if(x->x_bypass)
	{
		// Bypass, so just copy input to output
		while(n--)
		{
			inL = *in1++;	// We have to copy first before we can write to output
			inR = *in2++;	// since this might be at the same memory position
			*out1++ = inL;
			*out2++ = inR;
		}
	}
	else
	{
    	// DSP loop
		while(n--)
		{
			outL = outR = 0.;
			inL = *in1++;
			inR = *in2++;
			input = (inL + inR) * x->x_gain;

			// Accumulate comb filters in parallel
			for(i=0; i < numcombs; i++)
			{
				outL += comb_processL(x, i, input);
				outR += comb_processR(x, i, input);
			}

			// Feed through allpasses in series
			for(i=0; i < numallpasses; i++)
			{
				outL = allpass_processL(x, i, outL);
				outR = allpass_processR(x, i, outR);
			}

			// Calculate output REPLACING anything already there
			*out1++ = outL*x->x_wet1 + outR*x->x_wet2 + inL*x->x_dry;
			*out2++ = outR*x->x_wet1 + outL*x->x_wet2 + inR*x->x_dry;
		}
	}
#ifndef PD
out:
#endif
	return(w + 7);
}

// This is a hand unrolled version of the perform routine for
// DSP vector sizes that are multiples of 8
t_int *freeverb_perf8(t_int *w)
{
	// assign from parameters
    t_freeverb *x = (t_freeverb *)(w[1]);
    t_float *in1 = (t_float *)(w[2]);
    t_float *in2 = (t_float *)(w[3]);
    t_float *out1 = (t_float *)(w[4]);
    t_float *out2 = (t_float *)(w[5]);
    int n = (int)(w[6]);
	int i;
	t_float outL[8], outR[8], inL[8], inR[8], input[8];
    
#ifndef PD
    if (x->x_obj.z_disabled)
    	goto out;    	 
#endif

	if(x->x_bypass)
	{
		// Bypass, so just copy input to output
		for(; n; n -= 8, out1 += 8, out2 += 8, in1 += 8, in2 += 8)
		{
			inL[0] = in1[0];	// We have to copy first before we can write to output
			inR[0] = in2[0];	// since this might be at the same memory position
			out1[0] = inL[0];
			out2[0] = inR[0];
			inL[1] = in1[1];
			inR[1] = in2[1];
			out1[1] = inL[1];
			out2[1] = inR[1];
			inL[2] = in1[2];
			inR[2] = in2[2];
			out1[2] = inL[2];
			out2[2] = inR[2];
			inL[3] = in1[3];
			inR[3] = in2[3];
			out1[3] = inL[3];
			out2[3] = inR[3];
			inL[4] = in1[4];
			inR[4] = in2[4];
			out1[4] = inL[4];
			out2[4] = inR[4];
			inL[5] = in1[5];
			inR[5] = in2[5];
			out1[5] = inL[5];
			out2[5] = inR[5];
			inL[6] = in1[6];
			inR[6] = in2[6];
			out1[6] = inL[6];
			out2[6] = inR[6];
			inL[7] = in1[7];
			inR[7] = in2[7];
			out1[7] = inL[7];
			out2[7] = inR[7];
		}
	}
	else
	{
    	// DSP loop
		for(; n; n -= 8, out1 += 8, out2 += 8, in1 += 8, in2 += 8)
		{
			outL[0] = outR [0]= 0.;
			inL[0] = in1[0];
			inR[0] = in2[0];
			input[0] = (inL[0] + inR[0]) * x->x_gain;

			outL[1] = outR [1]= 0.;
			inL[1] = in1[1];
			inR[1] = in2[1];
			input[1] = (inL[1] + inR[1]) * x->x_gain;

			outL[2] = outR [2]= 0.;
			inL[2] = in1[2];
			inR[2] = in2[2];
			input[2] = (inL[2] + inR[2]) * x->x_gain;

			outL[3] = outR [3]= 0.;
			inL[3] = in1[3];
			inR[3] = in2[3];
			input[3] = (inL[3] + inR[3]) * x->x_gain;

			outL[4] = outR [4]= 0.;
			inL[4] = in1[4];
			inR[4] = in2[4];
			input[4] = (inL[4] + inR[4]) * x->x_gain;

			outL[5] = outR [5]= 0.;
			inL[5] = in1[5];
			inR[5] = in2[5];
			input[5] = (inL[5] + inR[5]) * x->x_gain;

			outL[6] = outR [6]= 0.;
			inL[6] = in1[6];
			inR[6] = in2[6];
			input[6] = (inL[6] + inR[6]) * x->x_gain;

			outL[7] = outR [7]= 0.;
			inL[7] = in1[7];
			inR[7] = in2[7];
			input[7] = (inL[7] + inR[7]) * x->x_gain;

			// Accumulate comb filters in parallel
			for(i=0; i < numcombs; i++)
			{
				outL[0] += comb_processL(x, i, input[0]);
				outR[0] += comb_processR(x, i, input[0]);
				outL[1] += comb_processL(x, i, input[1]);
				outR[1] += comb_processR(x, i, input[1]);
				outL[2] += comb_processL(x, i, input[2]);
				outR[2] += comb_processR(x, i, input[2]);
				outL[3] += comb_processL(x, i, input[3]);
				outR[3] += comb_processR(x, i, input[3]);
				outL[4] += comb_processL(x, i, input[4]);
				outR[4] += comb_processR(x, i, input[4]);
				outL[5] += comb_processL(x, i, input[5]);
				outR[5] += comb_processR(x, i, input[5]);
				outL[6] += comb_processL(x, i, input[6]);
				outR[6] += comb_processR(x, i, input[6]);
				outL[7] += comb_processL(x, i, input[7]);
				outR[7] += comb_processR(x, i, input[7]);
			}

			// Feed through allpasses in series
			for(i=0; i < numallpasses; i++)
			{
				outL[0] = allpass_processL(x, i, outL[0]);
				outR[0] = allpass_processR(x, i, outR[0]);
				outL[1] = allpass_processL(x, i, outL[1]);
				outR[1] = allpass_processR(x, i, outR[1]);
				outL[2] = allpass_processL(x, i, outL[2]);
				outR[2] = allpass_processR(x, i, outR[2]);
				outL[3] = allpass_processL(x, i, outL[3]);
				outR[3] = allpass_processR(x, i, outR[3]);
				outL[4] = allpass_processL(x, i, outL[4]);
				outR[4] = allpass_processR(x, i, outR[4]);
				outL[5] = allpass_processL(x, i, outL[5]);
				outR[5] = allpass_processR(x, i, outR[5]);
				outL[6] = allpass_processL(x, i, outL[6]);
				outR[6] = allpass_processR(x, i, outR[6]);
				outL[7] = allpass_processL(x, i, outL[7]);
				outR[7] = allpass_processR(x, i, outR[7]);
			}

			// Calculate output REPLACING anything already there
			out1[0] = outL[0]*x->x_wet1 + outR[0]*x->x_wet2 + inL[0]*x->x_dry;
			out2[0] = outR[0]*x->x_wet1 + outL[0]*x->x_wet2 + inR[0]*x->x_dry;

			out1[1] = outL[1]*x->x_wet1 + outR[1]*x->x_wet2 + inL[1]*x->x_dry;
			out2[1] = outR[1]*x->x_wet1 + outL[1]*x->x_wet2 + inR[1]*x->x_dry;
			out1[2] = outL[2]*x->x_wet1 + outR[2]*x->x_wet2 + inL[2]*x->x_dry;
			out2[2] = outR[2]*x->x_wet1 + outL[2]*x->x_wet2 + inR[2]*x->x_dry;
			out1[3] = outL[3]*x->x_wet1 + outR[3]*x->x_wet2 + inL[3]*x->x_dry;
			out2[3] = outR[3]*x->x_wet1 + outL[3]*x->x_wet2 + inR[3]*x->x_dry;
			out1[4] = outL[4]*x->x_wet1 + outR[4]*x->x_wet2 + inL[4]*x->x_dry;
			out2[4] = outR[4]*x->x_wet1 + outL[4]*x->x_wet2 + inR[4]*x->x_dry;
			out1[5] = outL[5]*x->x_wet1 + outR[5]*x->x_wet2 + inL[5]*x->x_dry;
			out2[5] = outR[5]*x->x_wet1 + outL[5]*x->x_wet2 + inR[5]*x->x_dry;
			out1[6] = outL[6]*x->x_wet1 + outR[6]*x->x_wet2 + inL[6]*x->x_dry;
			out2[6] = outR[6]*x->x_wet1 + outL[6]*x->x_wet2 + inR[6]*x->x_dry;
			out1[7] = outL[7]*x->x_wet1 + outR[7]*x->x_wet2 + inL[7]*x->x_dry;
			out2[7] = outR[7]*x->x_wet1 + outL[7]*x->x_wet2 + inR[7]*x->x_dry;
			}
	}
#ifndef PD
out:
#endif
	return(w + 7);
}

static void dsp_add_freeverb(t_freeverb *x, t_sample *in1, t_sample *in2, 
							 t_sample *out1, t_sample *out2, int n)
{
	if(n & 7)	// check whether block size is multiple of 8
		dsp_add(freeverb_perform, 6, x, in1, in2, out1, out2, n);
	else
		dsp_add(freeverb_perf8, 6, x, in1, in2, out1, out2, n);
}

void freeverb_dsp(t_freeverb *x, t_signal **sp)
{
    dsp_add_freeverb(x, sp[0]->s_vec, sp[1]->s_vec, sp[2]->s_vec, sp[3]->s_vec, sp[0]->s_n);
}

// ----------- general parameter & calculation stuff -----------

	// recalculate internal values after parameter change
static void freeverb_update(t_freeverb *x)
{

	int i;

	x->x_wet1 = x->x_wet*(x->x_width/2 + 0.5);
	x->x_wet2 = x->x_wet*((1-x->x_width)/2);

	if (x->x_mode >= freezemode)
	{
		x->x_roomsize1 = 1.;
		x->x_damp1 = 0.;
		x->x_gain = muted;
	}
	else
	{
		x->x_roomsize1 = x->x_roomsize;
		x->x_damp1 = x->x_damp;
		x->x_gain = (float)fixedgain;
	}

	comb_setfeedback(x, x->x_roomsize1);
	comb_setdamp(x, x->x_damp1);
}

	// the following functions set / get the parameters
static void freeverb_setroomsize(t_freeverb *x, t_floatarg value)
{
	x->x_roomsize = (value*scaleroom) + offsetroom;
	freeverb_update(x);
}

static float freeverb_getroomsize(t_freeverb *x)
{
	return (x->x_roomsize-offsetroom)/scaleroom;
}

static void freeverb_setdamp(t_freeverb *x, t_floatarg value)
{
	x->x_damp = value*scaledamp;
	freeverb_update(x);
}

static float freeverb_getdamp(t_freeverb *x)
{
	return x->x_damp/scaledamp;
}

static void freeverb_setwet(t_freeverb *x, t_floatarg value)
{
	x->x_wet = value*scalewet;
	freeverb_update(x);
}

static float freeverb_getwet(t_freeverb *x)
{
	return (x->x_wet/scalewet);
}

static void freeverb_setdry(t_freeverb *x, t_floatarg value)
{
	x->x_dry = value*scaledry;
}

static float freeverb_getdry(t_freeverb *x)
{
	return (x->x_dry/scaledry);
}

static void freeverb_setwidth(t_freeverb *x, t_floatarg value)
{
	x->x_width = value;
	freeverb_update(x);
}

static float freeverb_getwidth(t_freeverb *x)
{
	return x->x_width;
}

static void freeverb_setmode(t_freeverb *x, t_floatarg value)
{
	x->x_mode = value;
	freeverb_update(x);
}

static float freeverb_getmode(t_freeverb *x)
{
	if (x->x_mode >= freezemode)
		return 1;
	else
		return 0;
}

static void freeverb_setbypass(t_freeverb *x, t_floatarg value)
{
	x->x_bypass = value;
	if(x->x_bypass)freeverb_mute(x);
}

	// fill delay lines with silence
static void freeverb_mute(t_freeverb *x)
{
	int i;

	if (freeverb_getmode(x) >= freezemode)
		return;

	for (i=0;i<numcombs;i++)
	{
		memset(x->x_bufcombL[i], 0x0, x->x_combtuningL[i]*sizeof(t_float));
		memset(x->x_bufcombR[i], 0x0, x->x_combtuningR[i]*sizeof(t_float));
	}
	for (i=0;i<numallpasses;i++)
	{
		memset(x->x_bufallpassL[i], 0x0, x->x_allpasstuningL[i]*sizeof(t_float));
		memset(x->x_bufallpassR[i], 0x0, x->x_allpasstuningR[i]*sizeof(t_float));
	}
}

	// convert gain factor into dB
static float freeverb_getdb(float f)
{
    if (f <= 0)	// equation does not work for 0...
	{
		return (-96);	// ...so we output max. damping
	}
    else
    {
    	float val = (20./LOGTEN * log(f));
    	return (val);
    }
}

static void freeverb_print(t_freeverb *x)
{
	post("freeverb~:");
	if(x->x_bypass) {
		post("  bypass: on");
	} else post("  bypass: off");
	if(!freeverb_getmode(x)) {
		post("  mode: normal");
	} else post("  mode: freeze");
	post("  roomsize: %g", freeverb_getroomsize(x)*scaleroom+offsetroom);
	post("  damping: %g %%", freeverb_getdamp(x)*100);
	post("  width: %g %%", x->x_width * 100);
	post("  wet level: %g dB", freeverb_getdb(freeverb_getwet(x)*scalewet));
	post("  dry level: %g dB", freeverb_getdb(freeverb_getdry(x)*scaledry));
}

	// clean up
static void freeverb_free(t_freeverb *x)    
{
	int i;
#ifndef PD
	dsp_free((t_pxobject *)x);		// Free the object
#endif
	// free memory used by delay lines
	for(i = 0; i < numcombs; i++)
	{
		t_freebytes(x->x_bufcombL[i], x->x_combtuningL[i]*sizeof(t_float));
		t_freebytes(x->x_bufcombR[i], x->x_combtuningR[i]*sizeof(t_float));
	}

	for(i = 0; i < numallpasses; i++)
	{
		t_freebytes(x->x_bufallpassL[i], x->x_allpasstuningL[i]*sizeof(t_float));
		t_freebytes(x->x_bufallpassR[i], x->x_allpasstuningR[i]*sizeof(t_float));
	}
}

void *freeverb_new(t_floatarg f)
{
	int i;
	int sr = (int)sys_getsr();

#ifdef PD
    t_freeverb *x = (t_freeverb *)pd_new(freeverb_class);

	// add additional signal inlets and signal outlets
	inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_signal, &s_signal);

    outlet_new(&x->x_obj, gensym("signal"));
    outlet_new(&x->x_obj, gensym("signal"));
#else	// Max/MSP
    t_freeverb *x = (t_freeverb *)newobject(freeverb_class);
    
    // zero out the struct, to be careful
    if(x)
    {
    	for(i = sizeof(t_pxobject); i < sizeof(t_freeverb); i++)
    		((char*)x)[i] = 0;
    }
    
    dsp_setup((t_pxobject *)x,2);	// two signal inlets
    
    // two signal outlets
    outlet_new((t_object *)x, "signal");
    outlet_new((t_object *)x, "signal");
#endif	
	// recalculate the reverb parameters in case we don't run at 44.1kHz
	for(i = 0; i < numcombs; i++)
	{
		x->x_combtuningL[i] = (int)(combtuningL[i] * sr / 44100);
		x->x_combtuningR[i] = (int)(combtuningR[i] * sr / 44100);
	}
	for(i = 0; i < numallpasses; i++)
	{
		x->x_allpasstuningL[i] = (int)(allpasstuningL[i] * sr / 44100);
		x->x_allpasstuningR[i] = (int)(allpasstuningL[i] * sr / 44100);
	}

	// get memory for delay lines
	for(i = 0; i < numcombs; i++)
	{
		x->x_bufcombL[i] = (t_float*) t_getbytes(x->x_combtuningL[i]*sizeof(t_float));
		x->x_bufcombR[i] = (t_float*) t_getbytes(x->x_combtuningR[i]*sizeof(t_float));
		x->x_combidxL[i] = 0;
		x->x_combidxR[i] = 0;
	}
	for(i = 0; i < numallpasses; i++)
	{
		x->x_bufallpassL[i] = (t_float*) t_getbytes(x->x_allpasstuningL[i]*sizeof(t_float));
		x->x_bufallpassR[i] = (t_float*) t_getbytes(x->x_allpasstuningR[i]*sizeof(t_float));
		x->x_allpassidxL[i] = 0;
		x->x_allpassidxR[i] = 0;
	}

	// set default values
	x->x_allpassfeedback = 0.5;
	x->x_skip = 1;	// we use every sample
	freeverb_setwet(x, initialwet);
	freeverb_setroomsize(x, initialroom);
	freeverb_setdry(x, initialdry);
	freeverb_setdamp(x, initialdamp);
	freeverb_setwidth(x, initialwidth);
	freeverb_setmode(x, initialmode);
	freeverb_setbypass(x, initialbypass);

	// buffers will be full of rubbish - so we MUST mute them
	freeverb_mute(x);

    return (x);
}

#ifdef PD
void freeverb_tilde_setup(void)
{
    freeverb_class = class_new(gensym("freeverb~"), (t_newmethod)freeverb_new, (t_method)freeverb_free,
    	sizeof(t_freeverb), 0, A_DEFFLOAT, 0);
	CLASS_MAINSIGNALIN(freeverb_class, t_freeverb, x_float);
    class_addmethod(freeverb_class, (t_method)freeverb_dsp, gensym("dsp"), A_NULL);
    class_addmethod(freeverb_class, (t_method)freeverb_setroomsize, gensym("roomsize"), A_FLOAT, A_NULL);
    class_addmethod(freeverb_class, (t_method)freeverb_setdamp, gensym("damping"), A_FLOAT, A_NULL);
    class_addmethod(freeverb_class, (t_method)freeverb_setwidth, gensym("width"), A_FLOAT, A_NULL);
	class_addmethod(freeverb_class, (t_method)freeverb_setwet, gensym("wet"), A_FLOAT, A_NULL);
	class_addmethod(freeverb_class, (t_method)freeverb_setdry, gensym("dry"), A_FLOAT, A_NULL);
	class_addmethod(freeverb_class, (t_method)freeverb_setmode, gensym("freeze"), A_FLOAT, A_NULL);
	class_addmethod(freeverb_class, (t_method)freeverb_setbypass, gensym("bypass"), A_FLOAT, A_NULL);
	class_addmethod(freeverb_class, (t_method)freeverb_mute, gensym("clear"), A_NULL);
    class_addmethod(freeverb_class, (t_method)freeverb_print, gensym("print"), A_NULL);
	post(version);
}

#else
// ----------- Max/MSP -----------
void freeverb_assist(t_freeverb *x, void *b, long m, long a, char *s)
{
	switch(m) {
		case 1: // inlet
			switch(a) {
				case 0:
				sprintf(s, "(signal/message) Left Input & Control Messages");
				break;
				case 1:
				sprintf(s, "(signal) Right Input");
				break;
			}
		break;
		case 2: // outlet
			switch(a) {
				case 0:
				sprintf(s, "(signal) Left Output");
				break;
				case 1:
				sprintf(s, "(signal) Right Output");
				break;
			}
		break;
	}

}

extern "C" void main(void)
{
	setup((t_messlist **)&freeverb_class,(method)freeverb_new, (method)freeverb_free, 
		(short)sizeof(t_freeverb), 0L, A_DEFFLOAT, 0);
	addmess((method)freeverb_dsp, "dsp", A_CANT, 0);
	addmess((method)freeverb_assist, "assist", A_CANT, 0);
	addmess((method)freeverb_setroomsize, "roomsize", A_FLOAT, 0);
	addmess((method)freeverb_setdamp, "damping", A_FLOAT, 0);
	addmess((method)freeverb_setwidth, "width", A_FLOAT, 0);
	addmess((method)freeverb_setwet, "wet", A_FLOAT, 0);
	addmess((method)freeverb_setdry, "dry", A_FLOAT, 0);
	addmess((method)freeverb_setmode, "freeze", A_FLOAT, 0);
	addmess((method)freeverb_setbypass, "bypass", A_FLOAT, 0);
	addmess((method)freeverb_mute, "clear", 0);
	addmess((method)freeverb_print, "print", 0);
	dsp_initclass();
	finder_addclass("MSP Delays","freeverb~");
	post(version);
}
#endif