1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
|
#include "MSPd.h"
#define FUNC_LEN (32768)
#define OBJECT_NAME "phasemod~"
#if __PD__
static t_class *phasemod_class;
#endif
#if __MSP__
void *phasemod_class;
#endif
typedef struct _phasemod
{
#if __MSP__
t_pxobject x_obj;
#endif
#if __PD__
t_object x_obj;
float x_f;
#endif
t_float x_val;
float mygain;
float *wavetab;
float phs;
float bendphs;
float frequency;
float alpha;
short mute;
short connections[4];
float si_fac;
float sr;
} t_phasemod;
void *phasemod_new(t_symbol *s, int argc, t_atom *argv);
t_int *offset_perform(t_int *w);
t_int *phasemod_perform(t_int *w);
void phasemod_float(t_phasemod *x, double f);
void phasemod_int(t_phasemod *x, long n);
void phasemod_mute(t_phasemod *x, t_floatarg toggle);
void phasemod_dsp(t_phasemod *x, t_signal **sp, short *count);
void phasemod_assist(t_phasemod *x, void *b, long m, long a, char *s);
void phasemod_dsp_free(t_phasemod *x);
#if __MSP__
void main(void)
{
setup((t_messlist **)&phasemod_class,(method) phasemod_new, (method)phasemod_dsp_free, (short)sizeof(t_phasemod), 0L, A_GIMME, 0);
addmess((method)phasemod_dsp, "dsp", A_CANT, 0);
addfloat((method)phasemod_float);
addint((method)phasemod_int);
addmess((method)phasemod_assist,"assist",A_CANT,0);
addmess((method)phasemod_mute,"mute",A_FLOAT,0);
dsp_initclass();
post("%s %s",OBJECT_NAME, LYONPOTPOURRI_MSG);
}
#endif
#if __PD__
void phasemod_tilde_setup(void){
phasemod_class = class_new(gensym("phasemod~"), (t_newmethod)phasemod_new,
(t_method)phasemod_dsp_free,sizeof(t_phasemod), 0,A_GIMME,0);
CLASS_MAINSIGNALIN(phasemod_class, t_phasemod, x_f);
class_addmethod(phasemod_class,(t_method)phasemod_dsp,gensym("dsp"),0);
class_addmethod(phasemod_class,(t_method)phasemod_mute,gensym("mute"),A_FLOAT,0);
post("%s %s",OBJECT_NAME, LYONPOTPOURRI_MSG);
}
#endif
void phasemod_dsp_free( t_phasemod *x )
{
#if __MSP__
dsp_free((t_pxobject *) x);
#endif
free(x->wavetab);
}
void phasemod_mute(t_phasemod *x, t_floatarg toggle)
{
x->mute = toggle;
}
void phasemod_assist (t_phasemod *x, void *b, long msg, long arg, char *dst)
{
if (msg==1) {
switch (arg) {
case 0:
sprintf(dst,"(signal/float) Frequency ");
break;
case 1:
sprintf(dst,"(signal/float) Slope Factor ");
break;
}
} else if (msg==2) {
sprintf(dst,"(signal) Output ");
}
}
void *phasemod_new(t_symbol *s, int argc, t_atom *argv)
{
int i;
#if __MSP__
t_phasemod *x = (t_phasemod *)newobject(phasemod_class);
dsp_setup((t_pxobject *)x,2);
outlet_new((t_pxobject *)x, "signal");
#endif
#if __PD__
t_phasemod *x = (t_phasemod *)pd_new(phasemod_class);
inlet_new(&x->x_obj, &x->x_obj.ob_pd,gensym("signal"), gensym("signal"));
outlet_new(&x->x_obj, gensym("signal"));
#endif
x->phs = 0;
x->mute = 0;
x->frequency = 440.0;
x->wavetab = (float *) calloc(FUNC_LEN, sizeof(float) );
for( i = 0 ; i < FUNC_LEN; i++ ) {
x->wavetab[i] = sin( TWOPI * ((float)i/(float) FUNC_LEN)) ;
}
x->bendphs = 0;
x->sr = sys_getsr();
if(!x->sr)
x->sr = 44100.0;
x->si_fac = 1.0/x->sr;
return (x);
}
#if __MSP__
void phasemod_float(t_phasemod *x, double f)
{
int inlet = ((t_pxobject*)x)->z_in;
if (inlet == 0)
{
x->frequency = f;
}
else if (inlet == 1 )
{
x->alpha = f;
}
}
void phasemod_int(t_phasemod *x, long n)
{
x->x_val = (float)n;
}
#endif
t_int *phasemod_perform(t_int *w)
{
float phs;
t_phasemod *x = (t_phasemod *) (w[1]);
t_float *frequency_vec = (t_float *)(w[2]);
t_float *alpha_vec = (t_float *)(w[3]);
t_float *out = (t_float *)(w[4]);
t_int n = w[5];
short *connections = x->connections;
float bendphs = x->bendphs;
float *wavetab = x->wavetab;
float si_fac = x->si_fac;
float incr = x->frequency * si_fac ;
float alpha = x->alpha;
if( x->mute ){
while(n--){
*out++ = 0.0;
}
return (w + 6);
}
while (n--) {
if( connections[1] ){
alpha = *alpha_vec++;
}
if( alpha == 0 ){
alpha = .000001;
}
if( connections[0] ){
incr = *frequency_vec++ * si_fac ;
}
// NO NEGATIVE FREQUENCIES
if( incr < 0 )
incr = -incr;
bendphs += incr ;
while( bendphs > 1.0 )
bendphs -= 1.0 ;
phs = FUNC_LEN * ( (1 - exp(bendphs * alpha))/(1 - exp(alpha)) );
while( phs < 0.0 ) {
phs += FUNC_LEN;
}
while( phs >= FUNC_LEN ){
phs -= FUNC_LEN;
}
*out++ = wavetab[(int) phs] ;
}
x->bendphs = bendphs;
return (w+6);
}
void phasemod_dsp(t_phasemod *x, t_signal **sp, short *count)
{
// long i;
#if __MSP__
x->connections[0] = count[0];
x->connections[1] = count[1];
#endif
#if __PD__
x->connections[0] = 1;
x->connections[1] = 1;
#endif
if(x->sr != sp[0]->s_sr){
if(!sp[0]->s_sr){
error("zero sampling rate");
return;
}
x->sr = sp[0]->s_sr;
x->si_fac = 1.0/x->sr;
}
dsp_add(phasemod_perform, 5, x, sp[0]->s_vec, sp[1]->s_vec, sp[2]->s_vec, sp[0]->s_n);
}
|