File: pulser~.c

package info (click to toggle)
pd-lyonpotpourri 2.0%2Bgit20121009-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 3,180 kB
  • sloc: ansic: 18,330; makefile: 376
file content (288 lines) | stat: -rw-r--r-- 6,202 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
#include "MSPd.h"

#define FUNC_LEN (16384)
#define FUNC_LEN_OVER2 (8192)
#define MAX_COMPONENTS (256)

#define OBJECT_NAME "pulser~"

#if __PD__
static t_class *pulser_class;
#endif

#if __MSP__
void *pulser_class;
#endif

typedef struct _pulser
{
#if __MSP__
  t_pxobject x_obj;
#endif
#if __PD__
  t_object x_obj;
  float x_f;
#endif

  int components;
  float global_gain;
  float *wavetab;

  float *phases;
  float frequency;
  float pulsewidth;
  float si_fac;
  short mute;
  short connected[4];
  float sr;
} t_pulser;

void *pulser_new(t_symbol *s, int argc, t_atom *argv);

t_int *pulser_perform(t_int *w);
void pulser_dsp(t_pulser *x, t_signal **sp, short *count);
void pulser_assist(t_pulser *x, void *b, long m, long a, char *s);
void pulser_mute(t_pulser *x, t_floatarg toggle);
void pulser_harmonics(t_pulser *x, t_floatarg c);
void pulser_float(t_pulser *x, double f);
void pulser_free(t_pulser *x);

#if __MSP__
void main(void)
{
  setup((t_messlist **)&pulser_class,(method) pulser_new, (method)pulser_free, 
  (short)sizeof(t_pulser), 0L, A_GIMME, 0);
  addmess((method)pulser_dsp, "dsp", A_CANT, 0);
  addmess((method)pulser_assist,"assist",A_CANT,0);
  addmess((method)pulser_mute,"mute",A_FLOAT,0);
  addmess((method)pulser_harmonics,"harmonics",A_FLOAT,0);
  addfloat((method)pulser_float);
  dsp_initclass();
  post("%s %s",OBJECT_NAME, LYONPOTPOURRI_MSG);
}
#endif
#if __PD__
void pulser_tilde_setup(void){
  pulser_class = class_new(gensym("pulser~"), (t_newmethod)pulser_new, 
			    (t_method)pulser_free,sizeof(t_pulser), 0,A_GIMME,0);
  CLASS_MAINSIGNALIN(pulser_class, t_pulser, x_f);
  class_addmethod(pulser_class,(t_method)pulser_dsp,gensym("dsp"),0);
  class_addmethod(pulser_class,(t_method)pulser_mute,gensym("mute"),A_FLOAT,0);
  class_addmethod(pulser_class,(t_method)pulser_harmonics,gensym("harmonics"),A_FLOAT,0);
  post("%s %s",OBJECT_NAME, LYONPOTPOURRI_MSG);
}
#endif

void pulser_mute(t_pulser *x, t_floatarg toggle)
{
	x->mute = toggle;
}

void pulser_assist (t_pulser *x, void *b, long msg, long arg, char *dst)
{
  if (msg==1) {
    switch (arg) {
    case 0:
      sprintf(dst,"(signal/float) Frequency");
      break;
    case 1:
      sprintf(dst,"(signal/float) Pulse Width");
      break;
    }
  } else if (msg==2) {
    sprintf(dst,"(signal) Output");
  }
}

void pulser_harmonics(t_pulser *x, t_floatarg c)
{
	if(c < 2 || c > MAX_COMPONENTS){
		error("harmonic count out of bounds");
		return;
	}
	x->components = c;
	x->global_gain = 1.0 / (float) x->components ;
	// reset phases too?
}
#if __MSP__
void pulser_float(t_pulser *x, double f)
{
int inlet = ((t_pxobject*)x)->z_in;

	if (inlet == 0)
	{
		x->frequency = f;
	} 
	else if (inlet == 1 )
	{
		x->pulsewidth = f;
	}
}
#endif
void pulser_free(t_pulser *x)
{
#if __MSP__
	dsp_free((t_pxobject *)x);
#endif
	free(x->phases);
	free(x->wavetab);
}

void *pulser_new(t_symbol *s, int argc, t_atom *argv)
{
//  float srate;
  int i;
#if __MSP__
  t_pulser *x = (t_pulser *)newobject(pulser_class);
  dsp_setup((t_pxobject *)x,2);
  outlet_new((t_pxobject *)x, "signal");
#endif
#if __PD__
  t_pulser *x = (t_pulser *)pd_new(pulser_class);
  inlet_new(&x->x_obj, &x->x_obj.ob_pd,gensym("signal"), gensym("signal"));
  outlet_new(&x->x_obj, gensym("signal"));
#endif
  x->sr = sys_getsr();
  if(!x->sr){
    error("zero sampling rate, setting to 44100");
    x->sr = 44100;
  }

  x->mute = 0;
  x->components = 8;
  x->frequency = 440.0;
  x->pulsewidth = 0.5;
  
  if( argc > 0 )
    x->frequency = atom_getfloatarg(0,argc,argv);
  if( argc > 1 )
    x->components = atom_getfloatarg(1,argc,argv);
			
  x->si_fac = ((float)FUNC_LEN/x->sr) ;
  
  if(x->components <= 0 || x->components > MAX_COMPONENTS){
  	error("%d is an illegal number of components, setting to 8",x->components );
  	x->components = 8;
  }
  x->global_gain = 1.0 / (float) x->components ;
  x->phases = (float *) calloc(MAX_COMPONENTS, sizeof(float) );
  x->wavetab = (float *) calloc(FUNC_LEN, sizeof(float) );

  for(i = 0 ; i < FUNC_LEN; i++) {
    x->wavetab[i] = sin(TWOPI * ((float)i/(float) FUNC_LEN)) ;
  }
  return (x);
}


t_int *pulser_perform(t_int *w)
{

  int i,j;
//  float mygain ;
  float gain;

//  float phs;
  float incr;

  float outsamp;
  int lookdex;
  t_pulser *x = (t_pulser *) (w[1]);
  t_float *frequency_vec = (t_float *)(w[2]);
  t_float *pulsewidth_vec = (t_float *)(w[3]);
  t_float *out = (t_float *)(w[4]);
  t_int n = w[5];
	

  float *wavetab = x->wavetab;
  float si_fac = x->si_fac;

  float *phases = x->phases;
  int components = x->components;
  float global_gain = x->global_gain;
  float pulsewidth = x->pulsewidth;
  float frequency = x->frequency;
  short *connected = x->connected;
  
  if( x->mute )
  {
  	while( n-- ){
  		*out++ = 0.0;
  	}
  	return (w+6);
  }
  
  incr = frequency * si_fac;
  
  while (n--) { 

    if( connected[1] ){
    	pulsewidth = *pulsewidth_vec++;
    	// post("pw %f",pulsewidth);
    }
    if( pulsewidth < 0 )
      pulsewidth = 0;
    if( pulsewidth > 1 )
      pulsewidth = 1;
    
    if( connected[0] ){
      incr = *frequency_vec++ * si_fac ;
    }
 
    outsamp = 0;
    
    for( i = 0, j = 1; i < components; i++, j++ ){

      lookdex = (float)FUNC_LEN_OVER2 * pulsewidth * (float)j;
 
      while( lookdex >= FUNC_LEN ){
				lookdex -= FUNC_LEN;
		  }
 
      gain = wavetab[ lookdex ] ;
 
      phases[i] += incr * (float) j;
      while( phases[i] < 0.0 ) {
				phases[i] += FUNC_LEN;
      }
      while( phases[i] >= FUNC_LEN ){
				phases[i] -= FUNC_LEN;
      }
      outsamp += gain * wavetab[ (int) phases[i] ];
		
    }
    *out++ =  outsamp * global_gain; 
  }

  //	x->bendphs = bendphs;
  return (w+6);
}		

void pulser_dsp(t_pulser *x, t_signal **sp, short *count)
{
  long i;

	if(!sp[0]->s_sr){
		error("zero sampling rate");
		return;
	}
	
  if(x->sr != sp[0]->s_sr){
  	x->sr = sp[0]->s_sr;
  	x->si_fac = ((float)FUNC_LEN/x->sr);
  	for(i=0;i<MAX_COMPONENTS;i++){
  		x->phases[i] = 0.0;
  	}
  }
  for( i = 0; i < 2; i++){
#if __MSP__
  	x->connected[i] = count[i];
#endif
#if __PD__
  	x->connected[i] = 1;
#endif
  }
  dsp_add(pulser_perform, 5, x, sp[0]->s_vec, sp[1]->s_vec, sp[2]->s_vec, sp[0]->s_n);
}