1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
|
/* rvbap.c vers 1.1
written by Ville Pulkki 1999-2003
Helsinki University of Technology
and
Unversity of California at Berkeley
and written by Olaf Matthes 2003, 2007
Pd port by Frank Barknecht
See copyright in file with name LICENSE.txt */
#include <math.h>
#ifdef MAXMSP
#include "ext.h" /* you must include this - it contains the external object's link to max */
#define t_float float
#endif
#ifdef PD
#include "m_pd.h" /* you must include this - it contains the external object's link to pure data */
#endif
#ifndef M_PI
#define M_PI 3.14159265358979323846264338327950288
#endif
#define RVBAP_VERSION "rvbap v1.2.1 - (c) Olaf Matthes 2003-2007, based on vbap by Ville Pulkki"
#define MAX_LS_SETS 100 // maximum number of loudspeaker sets (triplets or pairs) allowed
#define MAX_LS_AMOUNT 55 // maximum amount of loudspeakers, can be increased
#ifdef _WINDOWS
#define sqrtf sqrt
#endif
#ifdef MAXMSP
typedef struct vbap /* This defines the object as an entity made up of other things */
{
t_object x_ob;
long x_azi; // panning direction azimuth
long x_ele; // panning direction elevation
t_float x_dist; // sound source distance (1.0-infinity)
void *x_outlet0;
void *x_outlet1;
void *x_outlet2;
void *x_outlet3;
void *x_outlet4;
t_float x_set_inv_matx[MAX_LS_SETS][9];// inverse matrix for each loudspeaker set
t_float x_set_matx[MAX_LS_SETS][9]; // matrix for each loudspeaker set
long x_lsset[MAX_LS_SETS][3]; // channel numbers of loudspeakers in each LS set
long x_lsset_available; // have loudspeaker sets been defined with define_loudspeakers
long x_lsset_amount; // amount of loudspeaker sets
long x_ls_amount; // amount of loudspeakers
long x_dimension; // 2 or 3
long x_spread; // spreading amount of virtual source (0-100)
t_float x_spread_base[3]; // used to create uniform spreading
t_float x_reverb_gs[MAX_LS_SETS]; // correction value for each loudspeaker set to get equal volume
} t_rvbap;
#endif
#ifdef PD
typedef struct vbap /* This defines the object as an entity made up of other things */
{
t_object x_ob;
t_float x_azi; // panning direction azimuth
t_float x_ele; // panning direction elevation
t_float x_dist; // sound source distance (1.0-infinity)
void *x_outlet0; /* outlet creation - inlets are automatic */
void *x_outlet1;
void *x_outlet2;
void *x_outlet3;
void *x_outlet4;
t_float x_set_inv_matx[MAX_LS_SETS][9];// inverse matrix for each loudspeaker set
t_float x_set_matx[MAX_LS_SETS][9]; // matrix for each loudspeaker set
long x_lsset[MAX_LS_SETS][3]; // channel numbers of loudspeakers in each LS set
long x_lsset_available; // have loudspeaker sets been defined with define_loudspeakers
long x_lsset_amount; // amount of loudspeaker sets
long x_ls_amount; // amount of loudspeakers
long x_dimension; // 2 or 3
t_float x_spread; // spreading amount of virtual source (0-100)
t_float x_spread_base[3]; // used to create uniform spreading
t_float x_reverb_gs[MAX_LS_SETS]; // correction value for each loudspeaker set to get equal volume
} t_rvbap;
#endif
// globals
static void new_spread_dir(t_rvbap *x, t_float spreaddir[3], t_float vscartdir[3], t_float spread_base[3]);
static void new_spread_base(t_rvbap *x, t_float spreaddir[3], t_float vscartdir[3]);
#ifdef MAXMSP
static void *rvbap_class;
static void rvbap_assist(t_rvbap *x, void *b, long m, long a, char *s);
static void rvbap_in1(t_rvbap *x, long n);
static void rvbap_in2(t_rvbap *x, long n);
static void rvbap_in3(t_rvbap *x, long n);
static void rvbap_in4(t_rvbap *x, long n);
static void rvbap_ft1(t_rvbap *x, double n);
static void rvbap_ft2(t_rvbap *x, double n);
static void rvbap_ft3(t_rvbap *x, double n);
static void rvbap_ft4(t_rvbap *x, double n);
#endif
#ifdef PD
static t_class *rvbap_class;
#endif
static void cross_prod(t_float v1[3], t_float v2[3], t_float v3[3]);
static void additive_vbap(t_float *final_gs, t_float cartdir[3], t_rvbap *x);
static void rvbap_bang(t_rvbap *x);
static void rvbap_matrix(t_rvbap *x, t_symbol *s, int ac, t_atom *av);
static void spread_it(t_rvbap *x, t_float *final_gs);
static void *rvbap_new(t_symbol *s, int ac, t_atom *av); // using A_GIMME - typed message list
static void vbap(t_float g[3], long ls[3], t_rvbap *x);
static void angle_to_cart(long azi, long ele, t_float res[3]);
static void cart_to_angle(t_float cvec[3], t_float avec[3]);
static void equal_reverb(t_rvbap *x, t_float *final_gs);
/* above are the prototypes for the methods/procedures/functions you will use */
#ifdef PD
void rvbap_setup(void)
{
rvbap_class = class_new(gensym("rvbap"), (t_newmethod)rvbap_new, 0, (short)sizeof(t_rvbap), 0, A_GIMME, 0);
/* rvbap_new = creation function, A_DEFLONG = its (optional) argument is a long (32-bit) int */
class_addbang(rvbap_class, rvbap_bang);
class_addmethod(rvbap_class, (t_method)rvbap_matrix, gensym("loudspeaker-matrices"), A_GIMME, 0);
}
#endif
#ifdef MAXMSP
int main(void)
{
setup((t_messlist **)&rvbap_class, (method)rvbap_new, 0L, (short)sizeof(t_rvbap), 0L, A_GIMME, 0);
/* rvbap_new = creation function, A_DEFLONG = its (optional) argument is a long (32-bit) int */
addmess((method)rvbap_assist, "assist", A_CANT, 0);
addbang((method)rvbap_bang); /* the procedure it uses when it gets a bang in the left inlet */
addinx((method)rvbap_in1, 1); /* the procedure for an int in the right inlet (inlet 1) */
addinx((method)rvbap_in2, 2); /* the procedure for an int in the right inlet (inlet 2) */
addinx((method)rvbap_in3, 3);
addinx((method)rvbap_in4, 4);
addftx((method)rvbap_ft1, 1); /* the procedure for an int in the right inlet (inlet 1) */
addftx((method)rvbap_ft2, 2); /* the procedure for an int in the right inlet (inlet 2) */
addftx((method)rvbap_ft3, 3);
addftx((method)rvbap_ft4, 4);
addmess((method)rvbap_matrix, "loudspeaker-matrices", A_GIMME, 0);
post(RVBAP_VERSION);
return 0;
}
static void rvbap_assist(t_rvbap *x, void *b, long m, long a, char *s)
{
switch(m){
case 1: // inlet
switch(a){
case 0:
sprintf(s, "define_loudspeakers / Bang to output actual values.");
break;
case 1:
sprintf(s, "(int) azimuth");
break;
case 2:
sprintf(s, "(int) elevation");
break;
case 3:
sprintf(s, "(int) spreading");
break;
case 4:
sprintf(s, "(t_float) distance");
break;
}
break;
case 2: // outlet
switch(a){
case 0:
sprintf(s, "(list) matrix~ values");
break;
case 1:
sprintf(s, "(int) actual azimuth");
break;
case 2:
sprintf(s, "(int) actual elevation");
break;
case 3:
sprintf(s, "(int) actual spreading");
break;
case 4:
sprintf(s, "(t_float) actual distance");
break;
}
break;
}
}
#endif
/* end MAXMSP */
static void angle_to_cart(long azi, long ele, t_float res[3])
/* converts angular coordinates to cartesian */
{
t_float atorad = (2.0 * M_PI / 360.0) ;
res[0] = cos((t_float) azi * atorad) * cos((t_float) ele * atorad);
res[1] = sin((t_float) azi * atorad) * cos((t_float) ele * atorad);
res[2] = sin((t_float) ele * atorad);
}
static void cart_to_angle(t_float cvec[3], t_float avec[3])
// converts cartesian coordinates to angular
{
t_float atorad = (t_float)(2.0 * M_PI / 360.0) ;
t_float pi = (t_float)M_PI;
t_float dist, atan_y_per_x, atan_x_pl_y_per_z;
t_float azi, ele;
if(cvec[0] == 0.0)
atan_y_per_x = pi / 2;
else
atan_y_per_x = atan(cvec[1] / cvec[0]);
azi = atan_y_per_x / atorad;
if(cvec[0] < 0.0)
azi += 180;
dist = sqrt(cvec[0]*cvec[0] + cvec[1]*cvec[1]);
if(cvec[2] == 0.0)
atan_x_pl_y_per_z = 0.0;
else
atan_x_pl_y_per_z = atan(cvec[2] / dist);
if(dist == 0.0){
if(cvec[2] < 0.0)
atan_x_pl_y_per_z = -pi/2.0;
else
atan_x_pl_y_per_z = pi/2.0;
}
ele = atan_x_pl_y_per_z / atorad;
dist = sqrt(cvec[0]*cvec[0] + cvec[1]*cvec[1] + cvec[2]*cvec[2]);
avec[0] = azi;
avec[1] = ele;
avec[2] = dist;
}
static void vbap(t_float g[3], long ls[3], t_rvbap *x)
{
/* calculates gain factors using loudspeaker setup and given direction */
t_float power;
int i, j, k, gains_modified;
t_float small_g;
t_float big_sm_g, gtmp[3];
long winner_set = 0;
t_float cartdir[3];
t_float new_cartdir[3];
t_float new_angle_dir[3];
long dim = x->x_dimension;
long neg_g_am, best_neg_g_am;
// transferring the azimuth angle to a decent value
while(x->x_azi > 180)
x->x_azi -= 360;
while(x->x_azi < -179)
x->x_azi += 360;
// transferring the elevation to a decent value
if(dim == 3){
while(x->x_ele > 180)
x->x_ele -= 360;
while(x->x_ele < -179)
x->x_ele += 360;
} else
x->x_ele = 0;
// go through all defined loudspeaker sets and find the set which
// has all positive values. If such is not found, set with largest
// minimum value is chosen. If at least one of gain factors of one LS set is negative
// it means that the virtual source does not lie in that LS set.
angle_to_cart(x->x_azi, x->x_ele, cartdir);
big_sm_g = -100000.0; // initial value for largest minimum gain value
best_neg_g_am = 3; // how many negative values in this set
for(i = 0; i < x->x_lsset_amount; i++){
small_g = 10000000.0;
neg_g_am = 3;
for(j = 0; j < dim; j++){
gtmp[j] = 0.0;
for(k = 0; k < dim; k++)
gtmp[j] += cartdir[k]* x->x_set_inv_matx[i][k+j*dim];
if(gtmp[j] < small_g)
small_g = gtmp[j];
if(gtmp[j] >= -0.01)
neg_g_am--;
}
if(small_g > big_sm_g && neg_g_am <= best_neg_g_am){
big_sm_g = small_g;
best_neg_g_am = neg_g_am;
winner_set = i;
g[0] = gtmp[0]; g[1] = gtmp[1];
ls[0] = x->x_lsset[i][0]; ls[1] = x->x_lsset[i][1];
if(dim == 3){
g[2] = gtmp[2];
ls[2] = x->x_lsset[i][2];
} else {
g[2] = 0.0;
ls[2] = 0;
}
}
}
// If chosen set produced a negative value, make it zero and
// calculate direction that corresponds to these new
// gain values. This happens when the virtual source is outside of
// all loudspeaker sets.
if(dim == 3){
gains_modified = 0;
for(i = 0; i < dim; i++){
if(g[i] < -0.01){
g[i] = 0.0001;
gains_modified = 1;
}
}
if(gains_modified == 1){
new_cartdir[0] = x->x_set_matx[winner_set][0] * g[0]
+ x->x_set_matx[winner_set][1] * g[1]
+ x->x_set_matx[winner_set][2] * g[2];
new_cartdir[1] = x->x_set_matx[winner_set][3] * g[0]
+ x->x_set_matx[winner_set][4] * g[1]
+ x->x_set_matx[winner_set][5] * g[2];
new_cartdir[2] = x->x_set_matx[winner_set][6] * g[0]
+ x->x_set_matx[winner_set][7] * g[1]
+ x->x_set_matx[winner_set][8] * g[2];
cart_to_angle(new_cartdir, new_angle_dir);
x->x_azi = (long) (new_angle_dir[0] + 0.5);
x->x_ele = (long) (new_angle_dir[1] + 0.5);
}
}
power = sqrt(g[0]*g[0] + g[1]*g[1] + g[2]*g[2]);
g[0] /= power;
g[1] /= power;
g[2] /= power;
}
static void cross_prod(t_float v1[3], t_float v2[3], t_float v3[3])
// vector cross product
{
t_float length;
v3[0] = (v1[1] * v2[2] ) - (v1[2] * v2[1]);
v3[1] = (v1[2] * v2[0] ) - (v1[0] * v2[2]);
v3[2] = (v1[0] * v2[1] ) - (v1[1] * v2[0]);
length = sqrt(v3[0]*v3[0] + v3[1]*v3[1] + v3[2]*v3[2]);
v3[0] /= length;
v3[1] /= length;
v3[2] /= length;
}
static void additive_vbap(t_float *final_gs, t_float cartdir[3], t_rvbap *x)
// calculates gains to be added to previous gains, used in
// multiple direction panning (source spreading)
{
t_float power;
int i, j, k, gains_modified;
t_float small_g;
t_float big_sm_g, gtmp[3];
long dim = x->x_dimension;
long neg_g_am, best_neg_g_am;
t_float g[3];
long ls[3] = {0, 0, 0};
big_sm_g = -100000.0;
best_neg_g_am = 3;
for(i = 0; i < x->x_lsset_amount; i++){
small_g = 10000000.0;
neg_g_am = 3;
for(j = 0; j < dim; j++){
gtmp[j] = 0.0;
for(k = 0; k < dim; k++)
gtmp[j] += cartdir[k]* x->x_set_inv_matx[i][k+j*dim];
if(gtmp[j] < small_g)
small_g = gtmp[j];
if(gtmp[j] >= -0.01)
neg_g_am--;
}
if(small_g > big_sm_g && neg_g_am <= best_neg_g_am){
big_sm_g = small_g;
best_neg_g_am = neg_g_am;
g[0] = gtmp[0]; g[1] = gtmp[1];
ls[0] = x->x_lsset[i][0]; ls[1] = x->x_lsset[i][1];
if(dim == 3){
g[2] = gtmp[2];
ls[2] = x->x_lsset[i][2];
} else {
g[2] = 0.0;
ls[2] = 0;
}
}
}
gains_modified = 0;
for(i = 0; i < dim; i++){
if(g[i] < -0.01){
gains_modified = 1;
}
}
if(gains_modified != 1){
if(dim == 3)
power = sqrt(g[0]*g[0] + g[1]*g[1] + g[2]*g[2]);
else
power = sqrt(g[0]*g[0] + g[1]*g[1]);
g[0] /= power;
g[1] /= power;
if(dim == 3)
g[2] /= power;
final_gs[ls[0]-1] += g[0];
final_gs[ls[1]-1] += g[1];
/* BUG FIX: this was causing negative indices with 2 dimensions so I
* made it only try when using 3 dimensions.
* 2006-08-13 <hans@at.or.at> */
if(dim == 3)
final_gs[ls[2]-1] += g[2];
}
}
static void new_spread_dir(t_rvbap *x, t_float spreaddir[3], t_float vscartdir[3], t_float spread_base[3])
// subroutine for spreading
{
t_float beta, m_gamma;
t_float a, b;
t_float pi = M_PI;
t_float power;
m_gamma = acos(vscartdir[0] * spread_base[0] +
vscartdir[1] * spread_base[1] +
vscartdir[2] * spread_base[2]) / pi * 180;
if(fabs(m_gamma) < 1){
angle_to_cart(x->x_azi + 90, 0, spread_base);
m_gamma = acos(vscartdir[0] * spread_base[0] +
vscartdir[1] * spread_base[1] +
vscartdir[2] * spread_base[2]) / pi * 180;
}
beta = 180 - m_gamma;
b = sin(x->x_spread * pi / 180) / sin(beta * pi / 180);
a = sin((180- x->x_spread - beta) * pi / 180) / sin(beta * pi / 180);
spreaddir[0] = a * vscartdir[0] + b * spread_base[0];
spreaddir[1] = a * vscartdir[1] + b * spread_base[1];
spreaddir[2] = a * vscartdir[2] + b * spread_base[2];
power=sqrt(spreaddir[0]*spreaddir[0] + spreaddir[1]*spreaddir[1]
+ spreaddir[2]*spreaddir[2]);
spreaddir[0] /= power;
spreaddir[1] /= power;
spreaddir[2] /= power;
}
static void new_spread_base(t_rvbap *x, t_float spreaddir[3], t_float vscartdir[3])
// subroutine for spreading
{
t_float d;
t_float pi = M_PI;
t_float power;
d = cos(x->x_spread / 180 * pi);
x->x_spread_base[0] = spreaddir[0] - d * vscartdir[0];
x->x_spread_base[1] = spreaddir[1] - d * vscartdir[1];
x->x_spread_base[2] = spreaddir[2] - d * vscartdir[2];
power = sqrt(x->x_spread_base[0]*x->x_spread_base[0] + x->x_spread_base[1]*x->x_spread_base[1]
+ x->x_spread_base[2]*x->x_spread_base[2]);
x->x_spread_base[0] /= power;
x->x_spread_base[1] /= power;
x->x_spread_base[2] /= power;
}
static void spread_it(t_rvbap *x, t_float *final_gs)
// apply the sound signal to multiple panning directions
// that causes some spreading.
// See theory in paper V. Pulkki "Uniform spreading of amplitude panned
// virtual sources" in WASPAA 99
{
t_float vscartdir[3];
t_float spreaddir[16][3];
t_float spreadbase[16][3];
long i, spreaddirnum;
t_float power;
if(x->x_dimension == 3){
spreaddirnum = 16;
angle_to_cart(x->x_azi, x->x_ele, vscartdir);
new_spread_dir(x, spreaddir[0], vscartdir, x->x_spread_base);
new_spread_base(x, spreaddir[0], vscartdir);
cross_prod(x->x_spread_base, vscartdir, spreadbase[1]); // four orthogonal dirs
cross_prod(spreadbase[1], vscartdir, spreadbase[2]);
cross_prod(spreadbase[2], vscartdir, spreadbase[3]);
// four between them
for(i=0;i<3;i++) spreadbase[4][i] = (x->x_spread_base[i] + spreadbase[1][i]) / 2.0;
for(i=0;i<3;i++) spreadbase[5][i] = (spreadbase[1][i] + spreadbase[2][i]) / 2.0;
for(i=0;i<3;i++) spreadbase[6][i] = (spreadbase[2][i] + spreadbase[3][i]) / 2.0;
for(i=0;i<3;i++) spreadbase[7][i] = (spreadbase[3][i] + x->x_spread_base[i]) / 2.0;
// four at half spread angle
for(i=0;i<3;i++) spreadbase[8][i] = (vscartdir[i] + x->x_spread_base[i]) / 2.0;
for(i=0;i<3;i++) spreadbase[9][i] = (vscartdir[i] + spreadbase[1][i]) / 2.0;
for(i=0;i<3;i++) spreadbase[10][i] = (vscartdir[i] + spreadbase[2][i]) / 2.0;
for(i=0;i<3;i++) spreadbase[11][i] = (vscartdir[i] + spreadbase[3][i]) / 2.0;
// four at quarter spread angle
for(i=0;i<3;i++) spreadbase[12][i] = (vscartdir[i] + spreadbase[8][i]) / 2.0;
for(i=0;i<3;i++) spreadbase[13][i] = (vscartdir[i] + spreadbase[9][i]) / 2.0;
for(i=0;i<3;i++) spreadbase[14][i] = (vscartdir[i] + spreadbase[10][i]) / 2.0;
for(i=0;i<3;i++) spreadbase[15][i] = (vscartdir[i] + spreadbase[11][i]) / 2.0;
additive_vbap(final_gs, spreaddir[0], x);
for(i = 1; i < spreaddirnum; i++){
new_spread_dir(x, spreaddir[i], vscartdir, spreadbase[i]);
additive_vbap(final_gs, spreaddir[i], x);
}
} else if(x->x_dimension == 2){
spreaddirnum = 6;
angle_to_cart(x->x_azi - x->x_spread, 0, spreaddir[0]);
angle_to_cart(x->x_azi - x->x_spread / 2, 0, spreaddir[1]);
angle_to_cart(x->x_azi - x->x_spread / 4, 0, spreaddir[2]);
angle_to_cart(x->x_azi + x->x_spread / 4, 0, spreaddir[3]);
angle_to_cart(x->x_azi + x->x_spread / 2, 0, spreaddir[4]);
angle_to_cart(x->x_azi + x->x_spread, 0, spreaddir[5]);
for(i = 0; i < spreaddirnum; i++)
additive_vbap(final_gs, spreaddir[i], x);
} else
return;
if(x->x_spread > 70)
for(i = 0; i < x->x_ls_amount; i++){
final_gs[i] += (x->x_spread - 70) / 30.0 * (x->x_spread - 70) / 30.0 * 10.0;
}
for(i = 0, power = 0.0; i < x->x_ls_amount; i++){
power += final_gs[i] * final_gs[i];
}
power = sqrt(power);
for(i = 0; i < x->x_ls_amount; i++){
final_gs[i] /= power;
}
}
static void equal_reverb(t_rvbap *x, t_float *final_gs)
// calculate constant reverb gains for equally distributed
// reverb levels
// this is achieved by calculating gains for a sound source
// that is everywhere, i.e. present in all directions
{
t_float spreaddir[16][3];
long i, spreaddirnum;
t_float power;
if(x->x_dimension == 3){
spreaddirnum = 5;
// horizontal plane
angle_to_cart( 90, 0, spreaddir[0]);
angle_to_cart(180, 0, spreaddir[1]);
angle_to_cart(270, 0, spreaddir[2]);
// above, below
angle_to_cart(0, 90, spreaddir[3]);
angle_to_cart(0, -90, spreaddir[4]);
for(i = 1; i < spreaddirnum; i++){
additive_vbap(x->x_reverb_gs, spreaddir[i], x);
}
} else if(x->x_dimension == 2){
// for 2-D we calculate virtual sources
// every 45 degrees in a horizontal plane
spreaddirnum = 7;
angle_to_cart( 90, 0, spreaddir[0]);
angle_to_cart(180, 0, spreaddir[1]);
angle_to_cart(270, 0, spreaddir[2]);
angle_to_cart( 45, 0, spreaddir[3]);
angle_to_cart(135, 0, spreaddir[4]);
angle_to_cart(225, 0, spreaddir[5]);
angle_to_cart(315, 0, spreaddir[6]);
for(i = 0; i < spreaddirnum; i++)
additive_vbap(x->x_reverb_gs, spreaddir[i], x);
} else
return;
for(i = 0, power = 0.0; i < x->x_ls_amount; i++){
power += x->x_reverb_gs[i] * x->x_reverb_gs[i];
}
power = sqrt(power);
for(i = 0; i < x->x_ls_amount; i++){
final_gs[i] /= power;
}
}
static void rvbap_bang(t_rvbap *x)
// top level, vbap gains are calculated and outputted
{
t_atom at[MAX_LS_AMOUNT];
t_float g[3];
long ls[3];
long i;
t_float *final_gs, overdist, oversqrtdist;
final_gs = (t_float *) getbytes(x->x_ls_amount * sizeof(t_float));
#ifdef PD
// avoid NaN explosions, MAX does this in rvbap_in4() && rvbap_ft4()
if(x->x_dist < 1.0) {x->x_dist = 1.0;}
#endif
if(x->x_lsset_available == 1){
vbap(g, ls, x);
for(i = 0; i < x->x_ls_amount; i++)
final_gs[i] = 0.0;
for(i = 0; i < x->x_dimension; i++){
final_gs[ls[i]-1] = g[i];
}
if(x->x_spread != 0){
spread_it(x, final_gs);
}
overdist = 1 / x->x_dist;
oversqrtdist = 1 / sqrt(x->x_dist);
// build output for every loudspeaker
for(i = 0; i < x->x_ls_amount; i++){
// first, we output the gains for the direct (unreverberated) signals
// these just decrease as the distance increases
#ifdef MAXMSP
SETLONG(&at[0], i);
SETFLOAT(&at[1], (final_gs[i] / x->x_dist));
outlet_list(x->x_outlet0, NULL, 2, at);
#endif
#ifdef PD
SETFLOAT(&at[0], i);
SETFLOAT(&at[1], (final_gs[i] / x->x_dist));
outlet_list(x->x_outlet0, gensym("list"), 2, at);
#endif
// second, we output the gains for the reverberated signals
// these are made up of a global (all speakers) and a local part
#ifdef MAXMSP
SETLONG(&at[0], i+x->x_ls_amount); // direct signals come first in matrix~
SETFLOAT(&at[1], (((oversqrtdist / x->x_dist) * x->x_reverb_gs[i]) + (oversqrtdist * (1 - overdist) * final_gs[i])));
outlet_list(x->x_outlet0, NULL, 2, at);
#endif
#ifdef PD
SETFLOAT(&at[0], (i+x->x_ls_amount)); // direct signals come first in matrix~
SETFLOAT(&at[1], (((oversqrtdist / x->x_dist) * x->x_reverb_gs[i]) + (oversqrtdist * (1 - overdist) * final_gs[i])));
outlet_list(x->x_outlet0, gensym("list"), 2, at);
#endif
}
#ifdef MAXMSP
outlet_int(x->x_outlet1, x->x_azi);
outlet_int(x->x_outlet2, x->x_ele);
outlet_int(x->x_outlet3, x->x_spread);
outlet_float(x->x_outlet4, (double)x->x_dist);
#endif
#ifdef PD
outlet_float(x->x_outlet1, x->x_azi);
outlet_float(x->x_outlet2, x->x_ele);
outlet_float(x->x_outlet3, x->x_spread);
outlet_float(x->x_outlet4, x->x_dist);
#endif
}
else
post("rvbap: Configure loudspeakers first!");
freebytes(final_gs, x->x_ls_amount * sizeof(t_float)); // bug fix added 9/00
}
/*--------------------------------------------------------------------------*/
static void rvbap_matrix(t_rvbap *x, t_symbol *s, int ac, t_atom *av)
// read in loudspeaker matrices
// and calculate the gains for the equally distributed
// reverb signal part (i.e. global reverb)
{
long counter = 0;
long datapointer = 0;
long setpointer = 0;
long i;
long azi = x->x_azi, ele = x->x_ele; // store original values
t_float g[3];
long ls[3];
(void)s;
if(ac > 0)
#ifdef MAXMSP
if(av[datapointer].a_type == A_LONG){
x->x_dimension = av[datapointer++].a_w.w_long;
x->x_lsset_available = 1;
} else
#endif
{
if(av[datapointer].a_type == A_FLOAT){
x->x_dimension = (long)av[datapointer++].a_w.w_float;
x->x_lsset_available = 1;
} else {
post("Error in loudspeaker data!");
x->x_lsset_available = 0;
return;
}
//post("%d",deb++);
}
if(ac > 1)
#ifdef MAXMSP
if(av[datapointer].a_type == A_LONG)
x->x_ls_amount = av[datapointer++].a_w.w_long;
else
#endif
if(av[datapointer].a_type == A_FLOAT)
x->x_ls_amount = (long) av[datapointer++].a_w.w_float;
else {
post("rvbap: Error in loudspeaker data!");
x->x_lsset_available = 0;
return;
}
else
x->x_lsset_available = 0;
if(x->x_dimension == 3)
counter = (ac - 2) / ((x->x_dimension * x->x_dimension*2) + x->x_dimension);
if(x->x_dimension == 2)
counter = (ac - 2) / ((x->x_dimension * x->x_dimension) + x->x_dimension);
x->x_lsset_amount = counter;
if(counter <= 0){
post("rvbap: Error in loudspeaker data!");
x->x_lsset_available = 0;
return;
}
while(counter-- > 0){
for(i = 0; i < x->x_dimension; i++){
#ifdef MAXMSP
if(av[datapointer].a_type == A_LONG)
#endif
#ifdef PD
if(av[datapointer].a_type == A_FLOAT)
#endif
{
x->x_lsset[setpointer][i] = (long)av[datapointer++].a_w.w_float;
}
else {
post("rvbap: Error in loudspeaker data!");
x->x_lsset_available = 0;
return;
}
}
for(i = 0; i < x->x_dimension * x->x_dimension; i++){
if(av[datapointer].a_type == A_FLOAT){
x->x_set_inv_matx[setpointer][i] = av[datapointer++].a_w.w_float;
}
else {
post("rvbap: Error in loudspeaker data!");
x->x_lsset_available = 0;
return;
}
}
if(x->x_dimension == 3){
for(i = 0; i < x->x_dimension * x->x_dimension; i++){
if(av[datapointer].a_type == A_FLOAT){
x->x_set_matx[setpointer][i] = av[datapointer++].a_w.w_float;
}
else {
post("rvbap: Error in loudspeaker data!");
x->x_lsset_available = 0;
return;
}
}
}
setpointer++;
}
// now configure static reverb correction values...
x->x_azi = x->x_ele = 0;
vbap(g, ls, x);
for(i = 0; i < x->x_ls_amount; i++){
x->x_reverb_gs[i] = 0.0;
}
for(i = 0; i < x->x_dimension; i++){
x->x_reverb_gs[ls[i]-1] = g[i];
// post("reverb gs #%d = %f", i, x->x_reverb_gs[i]);
}
equal_reverb(x,x->x_reverb_gs);
/* for(i=0; i<x->x_ls_amount; i++){ // do this for every speaker
post("reverb gs #%d = %f", i, x->x_reverb_gs[i]);
} */
post("rvbap: Loudspeaker setup configured!");
x->x_azi = azi; // restore original panning directions
x->x_ele = ele;
}
#ifdef MAXMSP
static void rvbap_in1(t_rvbap *x, long n) /* x = the instance of the object, n = the int received in the right inlet */
// panning angle azimuth
{
x->x_azi = n; /* store n in a global variable */
}
static void rvbap_in2(t_rvbap *x, long n) /* x = the instance of the object, n = the int received in the right inlet */
// panning angle elevation
{
x->x_ele = n; /* store n in a global variable */
}
/*--------------------------------------------------------------------------*/
static void rvbap_in3(t_rvbap *x, long n) /* x = the instance of the object, n = the int received in the right inlet */
// spread amount
{
if(n < 0) n = 0;
if(n > 100) n = 100;
x->x_spread = n; /* store n in a global variable */
}
/*--------------------------------------------------------------------------*/
static void rvbap_in4(t_rvbap *x, long n) /* x = the instance of the object, n = the int received in the right inlet */
// distance
{
if(n < 1) n = 1;
x->x_dist = (t_float)n; /* store n in a global variable */
}
static void rvbap_ft1(t_rvbap *x, double n) /* x = the instance of the object, n = the int received in the right inlet */
// panning angle azimuth
{
x->x_azi = (long)n; /* store n in a global variable */
}
static void rvbap_ft2(t_rvbap *x, double n) /* x = the instance of the object, n = the int received in the right inlet */
// panning angle elevation
{
x->x_ele = (long)n; /* store n in a global variable */
}
/*--------------------------------------------------------------------------*/
static void rvbap_ft3(t_rvbap *x, double n) /* x = the instance of the object, n = the int received in the right inlet */
// spreading
{
if(n < 0.0) n = 0.0;
if(n > 100.0) n = 100.0;
x->x_spread = (long) n; /* store n in a global variable */
}
/*--------------------------------------------------------------------------*/
static void rvbap_ft4(t_rvbap *x, double n) /* x = the instance of the object, n = the int received in the right inlet */
// distance
{
if(n < 1.0) n = 1.0;
x->x_dist = (t_float)n; /* store n in a global variable */
}
#endif // MAXMSP
static void *rvbap_new(t_symbol *s, int ac, t_atom *av)
/* create new instance of object... MUST send it an int even if you do nothing with this int!! */
{
t_rvbap *x;
(void)s;
#ifdef MAXMSP
x = (t_rvbap *)newobject(rvbap_class);
t_floatin(x, 4); /* takes the distance */
intin(x, 3);
intin(x, 2); /* create a second (int) inlet... remember right-to-left ordering in Max */
intin(x, 1); /* create a second (int) inlet... remember right-to-left ordering in Max */
x->x_outlet4 = floatout(x); /* distance */
x->x_outlet3 = intout(x);
x->x_outlet2 = intout(x); /* create an (int) outlet - rightmost outlet first... */
x->x_outlet1 = intout(x); /* create an (int) outlet */
x->x_outlet0 = listout(x); /* create a (list) outlet */
#endif
#ifdef PD
x = (t_rvbap *)pd_new(rvbap_class);
floatinlet_new(&x->x_ob, &x->x_azi);
floatinlet_new(&x->x_ob, &x->x_ele);
floatinlet_new(&x->x_ob, &x->x_spread);
floatinlet_new(&x->x_ob, &x->x_dist);
x->x_outlet0 = outlet_new(&x->x_ob, gensym("list"));
x->x_outlet1 = outlet_new(&x->x_ob, gensym("float"));
x->x_outlet2 = outlet_new(&x->x_ob, gensym("float"));
x->x_outlet3 = outlet_new(&x->x_ob, gensym("float"));
x->x_outlet4 = outlet_new(&x->x_ob, gensym("float"));
#endif
x->x_azi = 0;
x->x_ele = 0;
x->x_dist = 1.0;
x->x_spread_base[0] = 0.0;
x->x_spread_base[1] = 1.0;
x->x_spread_base[2] = 0.0;
x->x_spread = 0;
x->x_lsset_available = 0;
if(ac > 0){
#ifdef MAXMSP
if(av[0].a_type == A_LONG)
x->x_azi = av[0].a_w.w_long;
else
#endif
if(av[0].a_type == A_FLOAT)
x->x_azi = av[0].a_w.w_float;
}
if(ac > 1){
#ifdef MAXMSP
if(av[1].a_type == A_LONG)
x->x_ele = av[1].a_w.w_long;
else
#endif
if(av[1].a_type == A_FLOAT)
x->x_ele = av[1].a_w.w_float;
}
if(ac > 2){
#ifdef MAXMSP
if(av[2].a_type == A_LONG)
x->x_dist = (float)av[2].a_w.w_long;
else
#endif
if(av[2].a_type == A_FLOAT)
x->x_dist = av[2].a_w.w_float;
}
return(x); /* return a reference to the object instance */
}
|