File: Lockfree.h

package info (click to toggle)
pd-vstplugin 0.6.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 2,008 kB
  • sloc: cpp: 22,794; lisp: 2,860; makefile: 37; sh: 26
file content (207 lines) | stat: -rw-r--r-- 6,100 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
#pragma once

#include "Sync.h"

#include <stddef.h>
#include <atomic>
#include <array>
#include <memory>

namespace vst {

template<typename T, size_t N>
class LockfreeFifo {
 public:
    LockfreeFifo() = default;

    LockfreeFifo(const LockfreeFifo&) = delete;

    LockfreeFifo& operator=(const LockfreeFifo&) = delete;

    bool push(const T& data){
        return emplace(data);
    }
    template<typename... TArgs>
    bool emplace(TArgs&&... args){
        int next = (writeHead_.load(std::memory_order_relaxed) + 1) % N;
        if (next == readHead_.load(std::memory_order_acquire)){
            return false; // FIFO is full
        }
        data_[next] = T { std::forward<TArgs>(args)... };
        writeHead_.store(next, std::memory_order_release);
        return true;
    }
    bool pop(T& data){
        int pos = readHead_.load(std::memory_order_relaxed);
        if (pos == writeHead_.load(std::memory_order_acquire)) {
            return false; // FIFO is empty
        }
        int next = (pos + 1) % N;
        data = data_[next];
        readHead_.store(next, std::memory_order_release);
        return true;
    }
    void clear() {
        readHead_.store(writeHead_.load());
    }
    bool empty() const {
        return readHead_.load(std::memory_order_relaxed) == writeHead_.load(std::memory_order_relaxed);
    }
    size_t capacity() const { return N; }
    // raw data
    int readPos() const { return readHead_.load(std::memory_order_relaxed); }
    int writePos() const { return writeHead_.load(std::memory_order_relaxed); }
    T * data() { return data_.data(); }
    const T* data() const { return data_.data(); }
 private:
    std::atomic<int> readHead_{0};
    std::atomic<int> writeHead_{0};
    std::array<T, N> data_;
};

template<typename T>
struct Node {
    template<typename... U>
    Node(U&&... args)
        : next_(nullptr), data_(std::forward<U>(args)...) {}
    Node * next_;
    T data_;
};

// special MPSC queue implementation that can be safely created in a RT context.
// the required dummy node is a class member and therefore doesn't have to be allocated
// dynamically in the constructor. As a consequence, we need to be extra careful when
// freeing the nodes in the destructor (we must not delete the dummy node!)
// Multiple producers are synchronized with a simple spin lock.
// NB: the free list *could* be atomic, but we would need to be extra careful to avoid
// the ABA problem. (During a CAS loop the current node could be popped and pushed again,
// so that the CAS would succeed even though the object has changed.)
template<typename T, typename Alloc = std::allocator<T>>
class UnboundedMPSCQueue : protected std::allocator_traits<Alloc>::template rebind_alloc<Node<T>> {
    typedef typename std::allocator_traits<Alloc>::template rebind_alloc<Node<T>> Base;
 public:
    UnboundedMPSCQueue(const Alloc& alloc = Alloc {}) : Base(alloc) {
        // add dummy node
        first_ = devider_ = last_ = &dummy_;
    }

    UnboundedMPSCQueue(const UnboundedMPSCQueue&) = delete;

    UnboundedMPSCQueue& operator=(const UnboundedMPSCQueue&) = delete;

    ~UnboundedMPSCQueue(){
        if (needRelease()) {
            freeMemory();
        }
    }

    // not thread-safe!
    void reserve(size_t n){
        // check for existing empty nodes
        auto it = first_;
        auto end = devider_.load();
        while (it != end){
            n--;
            it = it->next_;
        }
        // add empty nodes
        while (n--){
            auto node = Base::allocate(1);
            new (node) Node<T>();
            node->next_ = first_;
            first_ = node;
        }
    }

    void push(const T& data){
        emplace(data);
    }

    template<typename... TArgs>
    void emplace(TArgs&&... args){
        Node<T>* node = nullptr;
        {
            // try to reuse existing node
            std::lock_guard lock(lock_);
            if (first_ != devider_.load(std::memory_order_acquire)) {
                node = first_;
                first_ = first_->next_;
                node->next_ = nullptr; // !
            }
        }
        if (!node) {
            // allocate new node
            node = Base::allocate(1);
            new (node) Node<T>();
        }
        node->data_ = T{std::forward<TArgs>(args)...};
        // push node
        std::lock_guard lock(lock_);
        auto last = last_.load(std::memory_order_relaxed);
        last->next_ = node;
        last_.store(node, std::memory_order_release); // publish
    }

    bool pop(T& result){
        if (!empty()) {
            // use node *after* devider, because devider is always a dummy!
            auto next = devider_.load(std::memory_order_relaxed)->next_;
            result = std::move(next->data_);
            devider_.store(next, std::memory_order_release); // publish
            return true;
        } else {
            return false;
        }
    }

    bool empty() const {
        return devider_.load(std::memory_order_relaxed)
                == last_.load(std::memory_order_acquire);
    }

    void clear(){
        devider_.store(last_);
    }

    // not thread-safe!
    template<typename Func>
    void forEach(Func&& fn) {
        auto it = devider_.load(std::memory_order_relaxed)->next_;
        while (it) {
            fn(it->data_);
            it = it->next_;
        }
    }

    void release() {
        freeMemory();
        first_ = devider_ = last_ = &dummy_;
        dummy_.next_ = nullptr; // !
    }

    bool needRelease() const {
        return first_ != last_.load(std::memory_order_relaxed);
    }

 private:
    Node<T>* first_;
    std::atomic<Node<T> *> devider_;
    std::atomic<Node<T> *> last_;
    SpinLock lock_;
    Node<T> dummy_; // optimization

    void freeMemory() {
        // only frees memory, doesn't reset pointers!
        auto it = first_;
        while (it){
            auto next = it->next_;
            if (it != &dummy_) {
                it->~Node<T>();
                Base::deallocate(it, 1);
            }
            it = next;
        }
    }
};

} // vst