1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
|
#pragma once
// only for VST_HOST_SYSTEM
#include "Interface.h"
#include "Log.h"
#include "MiscUtils.h"
#include <stddef.h>
// for spinlock
#if defined(_MSC_VER)
# ifndef WIN32_LEAN_AND_MEAN
# define WIN32_LEAN_AND_MEAN
# endif
# ifndef NOMINMAX
# define NOMINMAX
# endif
# include <Windows.h>
#elif defined(__SSE2__)
# include <immintrin.h>
#endif
// Wine executables segfaults during static initialization
// of mutex/event/semaphore objects which use the Win32 API,
// so we rather use the host system's synchronization primitives.
#if VST_HOST_SYSTEM != VST_WINDOWS
# include <pthread.h>
# if VST_HOST_SYSTEM == VST_MACOS
// macOS doesn't support unnamed pthread semaphores,
// so we use Mach semaphores instead
# include <mach/mach.h>
# else
// unnamed pthread semaphore
# include <semaphore.h>
# endif
#endif
#include <atomic>
#include <mutex>
#include <shared_mutex>
#include <thread>
namespace vst {
inline void pauseCpu() {
#if defined(_MSC_VER)
YieldProcessor();
#elif defined(__SSE2__)
_mm_pause();
#elif defined(__aarch64__)
__asm__ __volatile__("isb");
#elif defined(__arm__)
__asm__ __volatile__("yield");
#else
# warning "Cannot pause CPU, falling back to busy-waiting."
#endif
}
/*/////////////////// SyncCondition ///////////////////////*/
class SyncCondition {
public:
SyncCondition();
~SyncCondition();
SyncCondition(SyncCondition&&) = delete;
SyncCondition& operator=(SyncCondition&&) = delete;
void set();
void wait();
private:
#if VST_HOST_SYSTEM == VST_WINDOWS
void *condition_;
void *mutex_;
#else
pthread_cond_t condition_;
pthread_mutex_t mutex_;
#endif
bool state_ = false;
};
/*////////////////// Semaphore ////////////////////////*/
class Semaphore {
public:
Semaphore();
~Semaphore();
Semaphore(Semaphore&&) = delete;
Semaphore& operator=(Semaphore&&) = delete;
void post();
void post(int count);
void wait();
private:
#if VST_HOST_SYSTEM == VST_WINDOWS
void *sem_;
#elif VST_HOST_SYSTEM == VST_MACOS
semaphore_t sem_;
#else // Linux
sem_t sem_;
#endif
};
// thanks to https://preshing.com/20150316/semaphores-are-surprisingly-versatile/
/*/////////////////// LightSemaphore /////////////////*/
class LightSemaphore {
public:
void post(){
auto old = count_.fetch_add(1, std::memory_order_release);
if (old < 0){
sem_.post();
}
}
void post(int count){
auto old = count_.fetch_add(count, std::memory_order_release);
if (old < 0){
auto release = -old < count ? -old : count;
sem_.post(release);
}
}
void wait(){
auto old = count_.fetch_sub(1, std::memory_order_acquire);
if (old <= 0){
sem_.wait();
}
}
bool try_wait(){
auto value = count_.load(std::memory_order_relaxed);
// NOTE: we could also use a single compare_exchange_strong(),
// but I don't think that try_wait() should fail just because
// another thread decremented the count concurrently.
while (value > 0) {
if (count_.compare_exchange_weak(value, value - 1,
std::memory_order_acquire, std::memory_order_relaxed)) {
return true;
} // retry
}
return false;
}
private:
Semaphore sem_;
std::atomic<int32_t> count_{0};
};
/*////////////////// Event ///////////////////////*/
class Event {
public:
void set(){
int oldcount = count_.load(std::memory_order_relaxed);
for (;;) {
// don't increment past 1
// NOTE: we have to use the CAS loop even if we don't
// increment 'oldcount', because another thread
// might decrement the counter concurrently!
auto newcount = oldcount >= 0 ? 1 : oldcount + 1;
if (count_.compare_exchange_weak(oldcount, newcount,
std::memory_order_release, std::memory_order_relaxed)) {
break;
}
}
if (oldcount < 0){
sem_.post(); // release one waiting thread
}
}
void wait(){
auto old = count_.fetch_sub(1, std::memory_order_acquire);
if (old <= 0){
sem_.wait();
}
}
bool try_wait(){
auto value = count_.load(std::memory_order_relaxed);
// NOTE: we could also use a single compare_exchange_strong(),
// but I don't think that try_wait() should fail just because
// another thread decremented the count concurrently.
while (value > 0) {
if (count_.compare_exchange_weak(value, value - 1,
std::memory_order_acquire, std::memory_order_relaxed)) {
return true;
} // retry
}
return false;
}
private:
Semaphore sem_;
std::atomic<int32_t> count_{0};
};
/*///////////////////// SpinLock /////////////////////*/
// simple spin lock
class SpinLock {
public:
SpinLock() = default;
SpinLock(SpinLock&&) = delete;
SpinLock& operator=(SpinLock&&) = delete;
void lock(){
// only try to modify the shared state if the lock seems to be available.
// this should prevent unnecessary cache invalidation.
do {
while (locked_.load(std::memory_order_relaxed)){
pauseCpu();
}
} while (locked_.exchange(true, std::memory_order_acquire));
}
bool try_lock(){
return !locked_.exchange(true, std::memory_order_acquire);
}
bool try_lock(int numTries) {
for (int i = 0; i < numTries; i++) {
if (try_lock()) return true;
}
return false;
}
void unlock(){
locked_.store(false, std::memory_order_release);
}
protected:
// data
std::atomic<int32_t> locked_{false};
};
const size_t CACHELINE_SIZE = 64;
class alignas(CACHELINE_SIZE) PaddedSpinLock
: public SpinLock, public AlignedClass<PaddedSpinLock> {
public:
PaddedSpinLock() {
static_assert(sizeof(PaddedSpinLock) == CACHELINE_SIZE, "");
if ((reinterpret_cast<uintptr_t>(this) & (CACHELINE_SIZE-1)) != 0){
LOG_WARNING("PaddedSpinLock is not properly aligned!");
}
}
private:
// pad and align to prevent false sharing
char pad_[CACHELINE_SIZE - sizeof(locked_)];
};
/*//////////////////////// SharedMutex //////////////////////////*/
// The std::mutex implementation on Windows is bad on both MSVC and MinGW:
// the MSVC version apparantely has some additional overhead; winpthreads (MinGW) doesn't even use the obvious
// platform primitive (SRWLOCK), they rather roll their own mutex based on atomics and Events, which is bad for our use case.
// Even on Linux and macOS, there's some overhead for things we don't need, so we use pthreads directly.
#if VST_HOST_SYSTEM == VST_WINDOWS
class Mutex {
public:
Mutex();
Mutex(Mutex&&) = delete;
Mutex& operator=(Mutex&&) = delete;
// exclusive
void lock();
bool try_lock();
void unlock();
protected:
void* lock_; // avoid including windows headers (SWRLOCK is pointer sized)
};
#else
class Mutex {
public:
Mutex() { pthread_mutex_init(&lock_, nullptr); }
~Mutex() { pthread_mutex_destroy(&lock_); }
Mutex(Mutex&&) = delete;
Mutex& operator=(Mutex&&) = delete;
// exclusive
void lock() { pthread_mutex_lock(&lock_); }
bool try_lock() { return pthread_mutex_trylock(&lock_) == 0; }
void unlock() { pthread_mutex_unlock(&lock_); }
private:
pthread_mutex_t lock_;
};
#endif
/*//////////////////////// SharedMutex ///////////////////////////*/
#if VST_HOST_SYSTEM == VST_WINDOWS
class SharedMutex : public Mutex {
public:
using Mutex::Mutex;
// shared
void lock_shared();
bool try_lock_shared();
void unlock_shared();
};
#else
class SharedMutex {
public:
SharedMutex() { pthread_rwlock_init(&rwlock_, nullptr); }
~SharedMutex() { pthread_rwlock_destroy(&rwlock_); }
SharedMutex(SharedMutex&&) = delete;
SharedMutex& operator=(SharedMutex&&) = delete;
// exclusive
void lock() { pthread_rwlock_wrlock(&rwlock_); }
bool try_lock() { return pthread_rwlock_trywrlock(&rwlock_) == 0; }
void unlock() { pthread_rwlock_unlock(&rwlock_); }
// shared
void lock_shared() { pthread_rwlock_rdlock(&rwlock_); }
bool try_lock_shared() { return pthread_rwlock_tryrdlock(&rwlock_) == 0; }
void unlock_shared() { pthread_rwlock_unlock(&rwlock_); }
private:
pthread_rwlock_t rwlock_;
};
#endif
} // vst
|