File: math.html

package info (click to toggle)
pdb2pqr 2.1.1%2Bdfsg-7%2Bdeb11u1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 47,044 kB
  • sloc: python: 44,152; cpp: 9,847; xml: 9,092; sh: 79; makefile: 55; ansic: 36
file content (161 lines) | stat: -rw-r--r-- 11,750 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html><head><title>Python: module math</title>
<meta charset="utf-8">
</head><body bgcolor="#f0f0f8">

<table width="100%" cellspacing=0 cellpadding=2 border=0 summary="heading">
<tr bgcolor="#7799ee">
<td valign=bottom>&nbsp;<br>
<font color="#ffffff" face="helvetica, arial">&nbsp;<br><big><big><strong>math</strong></big></big></font></td
><td align=right valign=bottom
><font color="#ffffff" face="helvetica, arial"><a href=".">index</a><br><a href="file:/usr/local/Cellar/python/2.7.10_2/Frameworks/Python.framework/Versions/2.7/lib/python2.7/lib-dynload/math.so">/usr/local/Cellar/python/2.7.10_2/Frameworks/Python.framework/Versions/2.7/lib/python2.7/lib-dynload/math.so</a><br><a href="http://docs.python.org/library/math">Module Docs</a></font></td></tr></table>
    <p><tt>This&nbsp;module&nbsp;is&nbsp;always&nbsp;available.&nbsp;&nbsp;It&nbsp;provides&nbsp;access&nbsp;to&nbsp;the<br>
mathematical&nbsp;functions&nbsp;defined&nbsp;by&nbsp;the&nbsp;C&nbsp;standard.</tt></p>
<p>
<table width="100%" cellspacing=0 cellpadding=2 border=0 summary="section">
<tr bgcolor="#eeaa77">
<td colspan=3 valign=bottom>&nbsp;<br>
<font color="#ffffff" face="helvetica, arial"><big><strong>Functions</strong></big></font></td></tr>
    
<tr><td bgcolor="#eeaa77"><tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</tt></td><td>&nbsp;</td>
<td width="100%"><dl><dt><a name="-acos"><strong>acos</strong></a>(...)</dt><dd><tt><a href="#-acos">acos</a>(x)<br>
&nbsp;<br>
Return&nbsp;the&nbsp;arc&nbsp;cosine&nbsp;(measured&nbsp;in&nbsp;radians)&nbsp;of&nbsp;x.</tt></dd></dl>
 <dl><dt><a name="-acosh"><strong>acosh</strong></a>(...)</dt><dd><tt><a href="#-acosh">acosh</a>(x)<br>
&nbsp;<br>
Return&nbsp;the&nbsp;inverse&nbsp;hyperbolic&nbsp;cosine&nbsp;of&nbsp;x.</tt></dd></dl>
 <dl><dt><a name="-asin"><strong>asin</strong></a>(...)</dt><dd><tt><a href="#-asin">asin</a>(x)<br>
&nbsp;<br>
Return&nbsp;the&nbsp;arc&nbsp;sine&nbsp;(measured&nbsp;in&nbsp;radians)&nbsp;of&nbsp;x.</tt></dd></dl>
 <dl><dt><a name="-asinh"><strong>asinh</strong></a>(...)</dt><dd><tt><a href="#-asinh">asinh</a>(x)<br>
&nbsp;<br>
Return&nbsp;the&nbsp;inverse&nbsp;hyperbolic&nbsp;sine&nbsp;of&nbsp;x.</tt></dd></dl>
 <dl><dt><a name="-atan"><strong>atan</strong></a>(...)</dt><dd><tt><a href="#-atan">atan</a>(x)<br>
&nbsp;<br>
Return&nbsp;the&nbsp;arc&nbsp;tangent&nbsp;(measured&nbsp;in&nbsp;radians)&nbsp;of&nbsp;x.</tt></dd></dl>
 <dl><dt><a name="-atan2"><strong>atan2</strong></a>(...)</dt><dd><tt><a href="#-atan2">atan2</a>(y,&nbsp;x)<br>
&nbsp;<br>
Return&nbsp;the&nbsp;arc&nbsp;tangent&nbsp;(measured&nbsp;in&nbsp;radians)&nbsp;of&nbsp;y/x.<br>
Unlike&nbsp;<a href="#-atan">atan</a>(y/x),&nbsp;the&nbsp;signs&nbsp;of&nbsp;both&nbsp;x&nbsp;and&nbsp;y&nbsp;are&nbsp;considered.</tt></dd></dl>
 <dl><dt><a name="-atanh"><strong>atanh</strong></a>(...)</dt><dd><tt><a href="#-atanh">atanh</a>(x)<br>
&nbsp;<br>
Return&nbsp;the&nbsp;inverse&nbsp;hyperbolic&nbsp;tangent&nbsp;of&nbsp;x.</tt></dd></dl>
 <dl><dt><a name="-ceil"><strong>ceil</strong></a>(...)</dt><dd><tt><a href="#-ceil">ceil</a>(x)<br>
&nbsp;<br>
Return&nbsp;the&nbsp;ceiling&nbsp;of&nbsp;x&nbsp;as&nbsp;a&nbsp;float.<br>
This&nbsp;is&nbsp;the&nbsp;smallest&nbsp;integral&nbsp;value&nbsp;&gt;=&nbsp;x.</tt></dd></dl>
 <dl><dt><a name="-copysign"><strong>copysign</strong></a>(...)</dt><dd><tt><a href="#-copysign">copysign</a>(x,&nbsp;y)<br>
&nbsp;<br>
Return&nbsp;x&nbsp;with&nbsp;the&nbsp;sign&nbsp;of&nbsp;y.</tt></dd></dl>
 <dl><dt><a name="-cos"><strong>cos</strong></a>(...)</dt><dd><tt><a href="#-cos">cos</a>(x)<br>
&nbsp;<br>
Return&nbsp;the&nbsp;cosine&nbsp;of&nbsp;x&nbsp;(measured&nbsp;in&nbsp;radians).</tt></dd></dl>
 <dl><dt><a name="-cosh"><strong>cosh</strong></a>(...)</dt><dd><tt><a href="#-cosh">cosh</a>(x)<br>
&nbsp;<br>
Return&nbsp;the&nbsp;hyperbolic&nbsp;cosine&nbsp;of&nbsp;x.</tt></dd></dl>
 <dl><dt><a name="-degrees"><strong>degrees</strong></a>(...)</dt><dd><tt><a href="#-degrees">degrees</a>(x)<br>
&nbsp;<br>
Convert&nbsp;angle&nbsp;x&nbsp;from&nbsp;radians&nbsp;to&nbsp;degrees.</tt></dd></dl>
 <dl><dt><a name="-erf"><strong>erf</strong></a>(...)</dt><dd><tt><a href="#-erf">erf</a>(x)<br>
&nbsp;<br>
Error&nbsp;function&nbsp;at&nbsp;x.</tt></dd></dl>
 <dl><dt><a name="-erfc"><strong>erfc</strong></a>(...)</dt><dd><tt><a href="#-erfc">erfc</a>(x)<br>
&nbsp;<br>
Complementary&nbsp;error&nbsp;function&nbsp;at&nbsp;x.</tt></dd></dl>
 <dl><dt><a name="-exp"><strong>exp</strong></a>(...)</dt><dd><tt><a href="#-exp">exp</a>(x)<br>
&nbsp;<br>
Return&nbsp;e&nbsp;raised&nbsp;to&nbsp;the&nbsp;power&nbsp;of&nbsp;x.</tt></dd></dl>
 <dl><dt><a name="-expm1"><strong>expm1</strong></a>(...)</dt><dd><tt><a href="#-expm1">expm1</a>(x)<br>
&nbsp;<br>
Return&nbsp;<a href="#-exp">exp</a>(x)-1.<br>
This&nbsp;function&nbsp;avoids&nbsp;the&nbsp;loss&nbsp;of&nbsp;precision&nbsp;involved&nbsp;in&nbsp;the&nbsp;direct&nbsp;evaluation&nbsp;of&nbsp;<a href="#-exp">exp</a>(x)-1&nbsp;for&nbsp;small&nbsp;x.</tt></dd></dl>
 <dl><dt><a name="-fabs"><strong>fabs</strong></a>(...)</dt><dd><tt><a href="#-fabs">fabs</a>(x)<br>
&nbsp;<br>
Return&nbsp;the&nbsp;absolute&nbsp;value&nbsp;of&nbsp;the&nbsp;float&nbsp;x.</tt></dd></dl>
 <dl><dt><a name="-factorial"><strong>factorial</strong></a>(...)</dt><dd><tt><a href="#-factorial">factorial</a>(x)&nbsp;-&gt;&nbsp;Integral<br>
&nbsp;<br>
Find&nbsp;x!.&nbsp;Raise&nbsp;a&nbsp;ValueError&nbsp;if&nbsp;x&nbsp;is&nbsp;negative&nbsp;or&nbsp;non-integral.</tt></dd></dl>
 <dl><dt><a name="-floor"><strong>floor</strong></a>(...)</dt><dd><tt><a href="#-floor">floor</a>(x)<br>
&nbsp;<br>
Return&nbsp;the&nbsp;floor&nbsp;of&nbsp;x&nbsp;as&nbsp;a&nbsp;float.<br>
This&nbsp;is&nbsp;the&nbsp;largest&nbsp;integral&nbsp;value&nbsp;&lt;=&nbsp;x.</tt></dd></dl>
 <dl><dt><a name="-fmod"><strong>fmod</strong></a>(...)</dt><dd><tt><a href="#-fmod">fmod</a>(x,&nbsp;y)<br>
&nbsp;<br>
Return&nbsp;<a href="#-fmod">fmod</a>(x,&nbsp;y),&nbsp;according&nbsp;to&nbsp;platform&nbsp;C.&nbsp;&nbsp;x&nbsp;%&nbsp;y&nbsp;may&nbsp;differ.</tt></dd></dl>
 <dl><dt><a name="-frexp"><strong>frexp</strong></a>(...)</dt><dd><tt><a href="#-frexp">frexp</a>(x)<br>
&nbsp;<br>
Return&nbsp;the&nbsp;mantissa&nbsp;and&nbsp;exponent&nbsp;of&nbsp;x,&nbsp;as&nbsp;pair&nbsp;(m,&nbsp;e).<br>
m&nbsp;is&nbsp;a&nbsp;float&nbsp;and&nbsp;e&nbsp;is&nbsp;an&nbsp;int,&nbsp;such&nbsp;that&nbsp;x&nbsp;=&nbsp;m&nbsp;*&nbsp;2.**e.<br>
If&nbsp;x&nbsp;is&nbsp;0,&nbsp;m&nbsp;and&nbsp;e&nbsp;are&nbsp;both&nbsp;0.&nbsp;&nbsp;Else&nbsp;0.5&nbsp;&lt;=&nbsp;abs(m)&nbsp;&lt;&nbsp;1.0.</tt></dd></dl>
 <dl><dt><a name="-fsum"><strong>fsum</strong></a>(...)</dt><dd><tt><a href="#-fsum">fsum</a>(iterable)<br>
&nbsp;<br>
Return&nbsp;an&nbsp;accurate&nbsp;floating&nbsp;point&nbsp;sum&nbsp;of&nbsp;values&nbsp;in&nbsp;the&nbsp;iterable.<br>
Assumes&nbsp;IEEE-754&nbsp;floating&nbsp;point&nbsp;arithmetic.</tt></dd></dl>
 <dl><dt><a name="-gamma"><strong>gamma</strong></a>(...)</dt><dd><tt><a href="#-gamma">gamma</a>(x)<br>
&nbsp;<br>
Gamma&nbsp;function&nbsp;at&nbsp;x.</tt></dd></dl>
 <dl><dt><a name="-hypot"><strong>hypot</strong></a>(...)</dt><dd><tt><a href="#-hypot">hypot</a>(x,&nbsp;y)<br>
&nbsp;<br>
Return&nbsp;the&nbsp;Euclidean&nbsp;distance,&nbsp;<a href="#-sqrt">sqrt</a>(x*x&nbsp;+&nbsp;y*y).</tt></dd></dl>
 <dl><dt><a name="-isinf"><strong>isinf</strong></a>(...)</dt><dd><tt><a href="#-isinf">isinf</a>(x)&nbsp;-&gt;&nbsp;bool<br>
&nbsp;<br>
Check&nbsp;if&nbsp;float&nbsp;x&nbsp;is&nbsp;infinite&nbsp;(positive&nbsp;or&nbsp;negative).</tt></dd></dl>
 <dl><dt><a name="-isnan"><strong>isnan</strong></a>(...)</dt><dd><tt><a href="#-isnan">isnan</a>(x)&nbsp;-&gt;&nbsp;bool<br>
&nbsp;<br>
Check&nbsp;if&nbsp;float&nbsp;x&nbsp;is&nbsp;not&nbsp;a&nbsp;number&nbsp;(NaN).</tt></dd></dl>
 <dl><dt><a name="-ldexp"><strong>ldexp</strong></a>(...)</dt><dd><tt><a href="#-ldexp">ldexp</a>(x,&nbsp;i)<br>
&nbsp;<br>
Return&nbsp;x&nbsp;*&nbsp;(2**i).</tt></dd></dl>
 <dl><dt><a name="-lgamma"><strong>lgamma</strong></a>(...)</dt><dd><tt><a href="#-lgamma">lgamma</a>(x)<br>
&nbsp;<br>
Natural&nbsp;logarithm&nbsp;of&nbsp;absolute&nbsp;value&nbsp;of&nbsp;Gamma&nbsp;function&nbsp;at&nbsp;x.</tt></dd></dl>
 <dl><dt><a name="-log"><strong>log</strong></a>(...)</dt><dd><tt><a href="#-log">log</a>(x[,&nbsp;base])<br>
&nbsp;<br>
Return&nbsp;the&nbsp;logarithm&nbsp;of&nbsp;x&nbsp;to&nbsp;the&nbsp;given&nbsp;base.<br>
If&nbsp;the&nbsp;base&nbsp;not&nbsp;specified,&nbsp;returns&nbsp;the&nbsp;natural&nbsp;logarithm&nbsp;(base&nbsp;e)&nbsp;of&nbsp;x.</tt></dd></dl>
 <dl><dt><a name="-log10"><strong>log10</strong></a>(...)</dt><dd><tt><a href="#-log10">log10</a>(x)<br>
&nbsp;<br>
Return&nbsp;the&nbsp;base&nbsp;10&nbsp;logarithm&nbsp;of&nbsp;x.</tt></dd></dl>
 <dl><dt><a name="-log1p"><strong>log1p</strong></a>(...)</dt><dd><tt><a href="#-log1p">log1p</a>(x)<br>
&nbsp;<br>
Return&nbsp;the&nbsp;natural&nbsp;logarithm&nbsp;of&nbsp;1+x&nbsp;(base&nbsp;e).<br>
The&nbsp;result&nbsp;is&nbsp;computed&nbsp;in&nbsp;a&nbsp;way&nbsp;which&nbsp;is&nbsp;accurate&nbsp;for&nbsp;x&nbsp;near&nbsp;zero.</tt></dd></dl>
 <dl><dt><a name="-modf"><strong>modf</strong></a>(...)</dt><dd><tt><a href="#-modf">modf</a>(x)<br>
&nbsp;<br>
Return&nbsp;the&nbsp;fractional&nbsp;and&nbsp;integer&nbsp;parts&nbsp;of&nbsp;x.&nbsp;&nbsp;Both&nbsp;results&nbsp;carry&nbsp;the&nbsp;sign<br>
of&nbsp;x&nbsp;and&nbsp;are&nbsp;floats.</tt></dd></dl>
 <dl><dt><a name="-pow"><strong>pow</strong></a>(...)</dt><dd><tt><a href="#-pow">pow</a>(x,&nbsp;y)<br>
&nbsp;<br>
Return&nbsp;x**y&nbsp;(x&nbsp;to&nbsp;the&nbsp;power&nbsp;of&nbsp;y).</tt></dd></dl>
 <dl><dt><a name="-radians"><strong>radians</strong></a>(...)</dt><dd><tt><a href="#-radians">radians</a>(x)<br>
&nbsp;<br>
Convert&nbsp;angle&nbsp;x&nbsp;from&nbsp;degrees&nbsp;to&nbsp;radians.</tt></dd></dl>
 <dl><dt><a name="-sin"><strong>sin</strong></a>(...)</dt><dd><tt><a href="#-sin">sin</a>(x)<br>
&nbsp;<br>
Return&nbsp;the&nbsp;sine&nbsp;of&nbsp;x&nbsp;(measured&nbsp;in&nbsp;radians).</tt></dd></dl>
 <dl><dt><a name="-sinh"><strong>sinh</strong></a>(...)</dt><dd><tt><a href="#-sinh">sinh</a>(x)<br>
&nbsp;<br>
Return&nbsp;the&nbsp;hyperbolic&nbsp;sine&nbsp;of&nbsp;x.</tt></dd></dl>
 <dl><dt><a name="-sqrt"><strong>sqrt</strong></a>(...)</dt><dd><tt><a href="#-sqrt">sqrt</a>(x)<br>
&nbsp;<br>
Return&nbsp;the&nbsp;square&nbsp;root&nbsp;of&nbsp;x.</tt></dd></dl>
 <dl><dt><a name="-tan"><strong>tan</strong></a>(...)</dt><dd><tt><a href="#-tan">tan</a>(x)<br>
&nbsp;<br>
Return&nbsp;the&nbsp;tangent&nbsp;of&nbsp;x&nbsp;(measured&nbsp;in&nbsp;radians).</tt></dd></dl>
 <dl><dt><a name="-tanh"><strong>tanh</strong></a>(...)</dt><dd><tt><a href="#-tanh">tanh</a>(x)<br>
&nbsp;<br>
Return&nbsp;the&nbsp;hyperbolic&nbsp;tangent&nbsp;of&nbsp;x.</tt></dd></dl>
 <dl><dt><a name="-trunc"><strong>trunc</strong></a>(...)</dt><dd><tt><a href="#-trunc">trunc</a>(x:Real)&nbsp;-&gt;&nbsp;Integral<br>
&nbsp;<br>
Truncates&nbsp;x&nbsp;to&nbsp;the&nbsp;nearest&nbsp;Integral&nbsp;toward&nbsp;0.&nbsp;Uses&nbsp;the&nbsp;__trunc__&nbsp;magic&nbsp;method.</tt></dd></dl>
</td></tr></table><p>
<table width="100%" cellspacing=0 cellpadding=2 border=0 summary="section">
<tr bgcolor="#55aa55">
<td colspan=3 valign=bottom>&nbsp;<br>
<font color="#ffffff" face="helvetica, arial"><big><strong>Data</strong></big></font></td></tr>
    
<tr><td bgcolor="#55aa55"><tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</tt></td><td>&nbsp;</td>
<td width="100%"><strong>e</strong> = 2.718281828459045<br>
<strong>pi</strong> = 3.141592653589793</td></tr></table>
</body></html>