1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html><head><title>Python: module src.routines</title>
<meta charset="utf-8">
</head><body bgcolor="#f0f0f8">
<table width="100%" cellspacing=0 cellpadding=2 border=0 summary="heading">
<tr bgcolor="#7799ee">
<td valign=bottom> <br>
<font color="#ffffff" face="helvetica, arial"> <br><big><big><strong><a href="src.html"><font color="#ffffff">src</font></a>.routines</strong></big></big> (1 August 2008)</font></td
><td align=right valign=bottom
><font color="#ffffff" face="helvetica, arial"><a href=".">index</a><br><a href="file:/Users/d3y382/workspaces/apbs-pdb2pqr/pdb2pqr/src/routines.py">/Users/d3y382/workspaces/apbs-pdb2pqr/pdb2pqr/src/routines.py</a></font></td></tr></table>
<p><tt><a href="#Routines">Routines</a> for PDB2PQR<br>
<br>
This module contains the protein object used in PDB2PQR and methods<br>
used to correct, analyze, and optimize that protein.<br>
<br>
----------------------------<br>
<br>
PDB2PQR -- An automated pipeline for the setup, execution, and analysis of<br>
Poisson-Boltzmann electrostatics calculations<br>
<br>
Copyright (c) 2002-2011, Jens Erik Nielsen, University College Dublin;<br>
Nathan A. Baker, Battelle Memorial Institute, Developed at the Pacific<br>
Northwest National Laboratory, operated by Battelle Memorial Institute,<br>
Pacific Northwest Division for the U.S. Department Energy.;<br>
Paul Czodrowski & Gerhard Klebe, University of Marburg.<br>
<br>
All rights reserved.<br>
<br>
Redistribution and use in source and binary forms, with or without modification,<br>
are permitted provided that the following conditions are met:<br>
<br>
* Redistributions of source code must retain the above copyright notice,<br>
this list of conditions and the following disclaimer.<br>
* Redistributions in binary form must reproduce the above copyright notice,<br>
this list of conditions and the following disclaimer in the documentation<br>
and/or other materials provided with the distribution.<br>
* Neither the names of University College Dublin, Battelle Memorial Institute,<br>
Pacific Northwest National Laboratory, US Department of Energy, or University<br>
of Marburg nor the names of its contributors may be used to endorse or promote<br>
products derived from this software without specific prior written permission.<br>
<br>
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND<br>
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED<br>
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.<br>
IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,<br>
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,<br>
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,<br>
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF<br>
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE<br>
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED<br>
OF THE POSSIBILITY OF SUCH DAMAGE.<br>
<br>
----------------------------</tt></p>
<p>
<table width="100%" cellspacing=0 cellpadding=2 border=0 summary="section">
<tr bgcolor="#aa55cc">
<td colspan=3 valign=bottom> <br>
<font color="#ffffff" face="helvetica, arial"><big><strong>Modules</strong></big></font></td></tr>
<tr><td bgcolor="#aa55cc"><tt> </tt></td><td> </td>
<td width="100%"><table width="100%" summary="list"><tr><td width="25%" valign=top><a href="copy.html">copy</a><br>
<a href="getopt.html">getopt</a><br>
</td><td width="25%" valign=top><a href="math.html">math</a><br>
<a href="os.html">os</a><br>
</td><td width="25%" valign=top><a href="re.html">re</a><br>
<a href="xml.sax.html">xml.sax</a><br>
</td><td width="25%" valign=top><a href="string.html">string</a><br>
<a href="sys.html">sys</a><br>
</td></tr></table></td></tr></table><p>
<table width="100%" cellspacing=0 cellpadding=2 border=0 summary="section">
<tr bgcolor="#ee77aa">
<td colspan=3 valign=bottom> <br>
<font color="#ffffff" face="helvetica, arial"><big><strong>Classes</strong></big></font></td></tr>
<tr><td bgcolor="#ee77aa"><tt> </tt></td><td> </td>
<td width="100%"><dl>
<dt><font face="helvetica, arial"><a href="src.routines.html#Cells">Cells</a>
</font></dt><dt><font face="helvetica, arial"><a href="src.routines.html#Routines">Routines</a>
</font></dt></dl>
<p>
<table width="100%" cellspacing=0 cellpadding=2 border=0 summary="section">
<tr bgcolor="#ffc8d8">
<td colspan=3 valign=bottom> <br>
<font color="#000000" face="helvetica, arial"><a name="Cells">class <strong>Cells</strong></a></font></td></tr>
<tr bgcolor="#ffc8d8"><td rowspan=2><tt> </tt></td>
<td colspan=2><tt>The cells object provides a better way to search for nearby atoms. A<br>
pure all versus all search is O(n^2) - for every atom, every other atom<br>
must be searched. This is rather inefficient, especially for large<br>
proteins where cells may be tens of angstroms apart. The cell class<br>
breaks down the xyz protein space into several 3-D cells of desired<br>
size - then by simply examining atoms that fall into the adjacent<br>
cells one can quickly find nearby cells.<br>
<br>
NOTE: Ideally this should be somehow separated from the routines<br>
object...<br> </tt></td></tr>
<tr><td> </td>
<td width="100%">Methods defined here:<br>
<dl><dt><a name="Cells-__init__"><strong>__init__</strong></a>(self, cellsize)</dt><dd><tt>Initialize the cells.<br>
<br>
Parameters<br>
cellsize: The size of each cell (int)</tt></dd></dl>
<dl><dt><a name="Cells-addCell"><strong>addCell</strong></a>(self, atom)</dt><dd><tt>Add an atom to the cell<br>
<br>
Parameters<br>
atom: The atom to add (atom)</tt></dd></dl>
<dl><dt><a name="Cells-assignCells"><strong>assignCells</strong></a>(self, protein)</dt><dd><tt>Place each atom in a virtual cell for easy neighbor comparison</tt></dd></dl>
<dl><dt><a name="Cells-getNearCells"><strong>getNearCells</strong></a>(self, atom)</dt><dd><tt>Find all atoms in bordering cells to an atom<br>
<br>
Parameters<br>
atom: The atom to use (atom)<br>
Returns<br>
closeatoms: A list of nearby atoms (list)</tt></dd></dl>
<dl><dt><a name="Cells-removeCell"><strong>removeCell</strong></a>(self, atom)</dt><dd><tt>Remove the atom from a cell<br>
<br>
Parameters<br>
atom: The atom to add (atom)</tt></dd></dl>
</td></tr></table> <p>
<table width="100%" cellspacing=0 cellpadding=2 border=0 summary="section">
<tr bgcolor="#ffc8d8">
<td colspan=3 valign=bottom> <br>
<font color="#000000" face="helvetica, arial"><a name="Routines">class <strong>Routines</strong></a></font></td></tr>
<tr><td bgcolor="#ffc8d8"><tt> </tt></td><td> </td>
<td width="100%">Methods defined here:<br>
<dl><dt><a name="Routines-__init__"><strong>__init__</strong></a>(self, protein, verbose, definition<font color="#909090">=None</font>)</dt><dd><tt>Initialize the <a href="#Routines">Routines</a> class. The class contains most<br>
of the main routines that run PDB2PQR<br>
<br>
Parameters<br>
protein: The protein to run PDB2PQR on (Protein)<br>
verbose: A flag to determine whether to write to<br>
stdout</tt></dd></dl>
<dl><dt><a name="Routines-addHydrogens"><strong>addHydrogens</strong></a>(self)</dt><dd><tt>Add the hydrogens to the protein. This requires either<br>
the rebuildTetrahedral function for tetrahedral geometries<br>
or the standard quatfit methods. These methods use three<br>
nearby bonds to rebuild the atom; the closer the bonds, the<br>
more accurate the results. As such the peptide bonds are<br>
used when available.</tt></dd></dl>
<dl><dt><a name="Routines-applyForcefield"><strong>applyForcefield</strong></a>(self, forcefield)</dt><dd><tt>Apply the forcefield to the atoms within the protein<br>
<br>
Parameters<br>
forcefield: The forcefield object (forcefield)<br>
Returns<br>
hitlist: A list of atoms that were found in<br>
the forcefield (list)<br>
misslist: A list of atoms that were not found in<br>
the forcefield (list)</tt></dd></dl>
<dl><dt><a name="Routines-applyNameScheme"><strong>applyNameScheme</strong></a>(self, forcefield)</dt><dd><tt>Apply the naming scheme of the given forcefield to the atoms<br>
within the protein<br>
<br>
Parameters<br>
forcefield: The forcefield object (forcefield)</tt></dd></dl>
<dl><dt><a name="Routines-applyPatch"><strong>applyPatch</strong></a>(self, patchname, residue)</dt><dd><tt>Apply a patch to the given residue. This is one of the key<br>
functions in PDB2PQR. A similar function appears in<br>
definitions.py - that version is needed for residue level<br>
subtitutions so certain protonation states (i.e. CYM, HSE)<br>
are detectatble on input.<br>
<br>
This version looks up the particular patch name in the<br>
patchmap stored in the protein, and then applies the<br>
various commands to the reference and actual residue<br>
structures.<br>
<br>
See the inline comments for a more detailed explanation.<br>
<br>
Parameters<br>
patchname: The name of the patch (string)<br>
residue: The residue to apply the patch to (residue)</tt></dd></dl>
<dl><dt><a name="Routines-apply_pka_values"><strong>apply_pka_values</strong></a>(self, ff, ph, pkadic)</dt></dl>
<dl><dt><a name="Routines-assignTermini"><strong>assignTermini</strong></a>(self, chain, neutraln<font color="#909090">=False</font>, neutralc<font color="#909090">=False</font>)</dt><dd><tt>Assign the termini for the given chain by looking at<br>
the start and end residues.</tt></dd></dl>
<dl><dt><a name="Routines-calculateDihedralAngles"><strong>calculateDihedralAngles</strong></a>(self)</dt><dd><tt>Calculate the dihedral angle for every residue within the protein</tt></dd></dl>
<dl><dt><a name="Routines-debumpProtein"><strong>debumpProtein</strong></a>(self)</dt><dd><tt>Make sure that none of the added atoms were rebuilt<br>
on top of existing atoms. See each called function<br>
for more information.</tt></dd></dl>
<dl><dt><a name="Routines-debumpResidue"><strong>debumpResidue</strong></a>(self, residue, conflictnames)</dt><dd><tt>Debump a specific residue. Only should be called<br>
if the residue has been detected to have a conflict.<br>
If called, try to rotate about dihedral angles to<br>
resolve the conflict.<br>
<br>
Parameters<br>
residue: The residue in question<br>
conflictnames: A list of atomnames that were<br>
rebuilt too close to other atoms<br>
Returns<br>
True if successful, False otherwise</tt></dd></dl>
<dl><dt><a name="Routines-findMissingHeavy"><strong>findMissingHeavy</strong></a>(self)</dt><dd><tt>Repair residues that contain missing heavy (non-Hydrogen) atoms</tt></dd></dl>
<dl><dt><a name="Routines-findNearbyAtoms"><strong>findNearbyAtoms</strong></a>(self, atom)</dt><dd><tt>Find nearby atoms for conflict-checking. Uses<br>
neighboring cells to compare atoms rather than an all<br>
versus all O(n^2) algorithm, which saves a great deal<br>
of time. There are several instances where we ignore<br>
potential conflicts; these include donor/acceptor pairs,<br>
atoms in the same residue, and bonded CYS bridges.<br>
<br>
Parameters<br>
atom: Find nearby atoms to this atom (Atom)<br>
Returns<br>
nearatoms: A dictionary of <Atom too close> to <amount of overlap for that atom>.</tt></dd></dl>
<dl><dt><a name="Routines-findResidueConflicts"><strong>findResidueConflicts</strong></a>(self, residue, writeConflictInfo<font color="#909090">=False</font>)</dt></dl>
<dl><dt><a name="Routines-getClosestAtom"><strong>getClosestAtom</strong></a>(self, atom)</dt><dd><tt>Get the closest atom that does not form a donor/acceptor pair.<br>
Used to detect potential conflicts.<br>
<br>
NOTE: <a href="#Cells">Cells</a> must be set before using this function.<br>
<br>
Parameters<br>
atom: The atom in question (Atom)<br>
Returns<br>
bestatom: The closest atom to the input atom that does not<br>
satisfy a donor/acceptor pair.</tt></dd></dl>
<dl><dt><a name="Routines-getMoveableNames"><strong>getMoveableNames</strong></a>(self, residue, pivot)</dt><dd><tt>Return all atomnames that are further away than the<br>
pivot atom.<br>
<br>
Parameters<br>
residue: The residue to use<br>
pivot: The pivot atomname</tt></dd></dl>
<dl><dt><a name="Routines-getWarnings"><strong>getWarnings</strong></a>(self)</dt><dd><tt>Get all warnings generated from routines</tt></dd></dl>
<dl><dt><a name="Routines-getbumpscore"><strong>getbumpscore</strong></a>(self, residue)</dt><dd><tt>Get an bump score for the current structure</tt></dd></dl>
<dl><dt><a name="Routines-getbumpscore_atom"><strong>getbumpscore_atom</strong></a>(self, atom)</dt><dd><tt>Find nearby atoms for conflict-checking. Uses<br>
neighboring cells to compare atoms rather than an all<br>
versus all O(n^2) algorithm, which saves a great deal<br>
of time. There are several instances where we ignore<br>
potential conflicts; these include donor/acceptor pairs,<br>
atoms in the same residue, and bonded CYS bridges.<br>
<br>
Parameters<br>
atom: Find nearby atoms to this atom (Atom)<br>
Returns<br>
bumpscore: a bump score sum((dist-cutoff)**20 for all near atoms<br>
<br>
Jens rewrote this function from findNearbyAtoms to<br>
be usable for detecting bumps for optimzable hydrogens</tt></dd></dl>
<dl><dt><a name="Routines-pickDihedralAngle"><strong>pickDihedralAngle</strong></a>(self, residue, conflictnames, oldnum<font color="#909090">=None</font>)</dt><dd><tt>Choose an angle number to use in debumping<br>
<br>
Algorithm<br>
Instead of simply picking a random chiangle, this function<br>
uses a more intelligent method to improve efficiency.<br>
The algorithm uses the names of the conflicting atoms<br>
within the residue to determine which angle number<br>
has the best chance of fixing the problem(s). The method<br>
also insures that the same chiangle will not be run twice<br>
in a row.<br>
Parameters<br>
residue: The residue that is being debumped (Residue)<br>
conflictnames: A list of atom names that are currently<br>
conflicts (list)<br>
oldnum : The old dihedral angle number (int)<br>
Returns<br>
bestnum : The new dihedral angle number (int)</tt></dd></dl>
<dl><dt><a name="Routines-removeHydrogens"><strong>removeHydrogens</strong></a>(self)</dt></dl>
<dl><dt><a name="Routines-repairHeavy"><strong>repairHeavy</strong></a>(self)</dt><dd><tt>Repair all heavy atoms. Unfortunately the first time we<br>
get to an atom we might not be able to rebuild it - it<br>
might depend on other atoms to be rebuild first (think side<br>
chains). As such a 'seenmap' is used to keep track of what<br>
we've already seen and subsequent attempts to rebuild the<br>
atom.</tt></dd></dl>
<dl><dt><a name="Routines-runPDB2PKA"><strong>runPDB2PKA</strong></a>(self, ph, ff, pdblist, ligand, verbose, pdb2pka_params)</dt></dl>
<dl><dt><a name="Routines-runPROPKA"><strong>runPROPKA</strong></a>(self, ph, ff, rootname, outname, options)</dt><dd><tt>Run PROPKA on the current protein, setting protonation states to<br>
the correct values<br>
<br>
Parameters<br>
ph: The desired pH of the system<br>
ff: The forcefield name to be used<br>
outname: The name of the PQR outfile</tt></dd></dl>
<dl><dt><a name="Routines-scoreDihedralAngle"><strong>scoreDihedralAngle</strong></a>(self, residue, anglenum)</dt></dl>
<dl><dt><a name="Routines-setDihedralAngle"><strong>setDihedralAngle</strong></a>(self, residue, anglenum, angle)</dt><dd><tt>Rotate a residue about a given angle. Uses the quatfit<br>
methods to perform the matrix mathematics.<br>
<br>
Parameters<br>
residue: The residue to rotate<br>
anglenum: The number of the angle to rotate as<br>
listed in residue.dihedrals<br>
angle: The desired angle.</tt></dd></dl>
<dl><dt><a name="Routines-setDonorsAndAcceptors"><strong>setDonorsAndAcceptors</strong></a>(self)</dt><dd><tt>Set the donors and acceptors within the protein</tt></dd></dl>
<dl><dt><a name="Routines-setReferenceDistance"><strong>setReferenceDistance</strong></a>(self)</dt><dd><tt>Set the distance to the CA atom in the residue.<br>
This is necessary for determining which atoms are<br>
allowed to move during rotations. Uses the<br>
shortestPath algorithm found in utilities.py.</tt></dd></dl>
<dl><dt><a name="Routines-setStates"><strong>setStates</strong></a>(self)</dt><dd><tt>Set the state of each residue. This is the last step<br>
before assigning the forcefield, but is necessary so<br>
as to distinguish between various protonation states.<br>
<br>
See aa.py for residue-specific functions.</tt></dd></dl>
<dl><dt><a name="Routines-setTermini"><strong>setTermini</strong></a>(self, neutraln<font color="#909090">=False</font>, neutralc<font color="#909090">=False</font>)</dt><dd><tt>Set the termini for the protein. First set all known<br>
termini by looking at the ends of the chain. Then<br>
examine each residue, looking for internal chain breaks.</tt></dd></dl>
<dl><dt><a name="Routines-updateBonds"><strong>updateBonds</strong></a>(self)</dt><dd><tt>Update the bonding network of the protein. This happens<br>
in 3 steps:<br>
1. Applying the PEPTIDE patch to all Amino residues<br>
so as to add reference for the N(i+1) and C(i-1)<br>
atoms<br>
2. UpdateInternalBonds for inter-residue linking<br>
3. Set the links to the N(i+1) and C(i-1) atoms</tt></dd></dl>
<dl><dt><a name="Routines-updateInternalBonds"><strong>updateInternalBonds</strong></a>(self)</dt><dd><tt>Update the internal bonding network using the reference<br>
objects in each atom.</tt></dd></dl>
<dl><dt><a name="Routines-updateResidueTypes"><strong>updateResidueTypes</strong></a>(self)</dt><dd><tt>Find the type of residue as notated in the Amino Acid definition</tt></dd></dl>
<dl><dt><a name="Routines-updateSSbridges"><strong>updateSSbridges</strong></a>(self)</dt><dd><tt>Check for SS-bridge partners, and if present, set appropriate<br>
partners</tt></dd></dl>
<dl><dt><a name="Routines-write"><strong>write</strong></a>(self, message, indent<font color="#909090">=0</font>)</dt><dd><tt>Write a message to stdout for debugging if verbose<br>
<br>
Parameters<br>
message: The message to write (string)<br>
indent : The indent level (int, default=0)</tt></dd></dl>
<hr>
Static methods defined here:<br>
<dl><dt><a name="Routines-rebuildTetrahedral"><strong>rebuildTetrahedral</strong></a>(residue, atomname)</dt><dd><tt>Rebuild a tetrahedral hydrogen group. This is necessary<br>
due to the shortcomings of the quatfit routine - given a<br>
tetrahedral geometry and two existing hydrogens, the<br>
quatfit routines have two potential solutions. This function<br>
uses basic tetrahedral geometry to fix this issue.<br>
<br>
Parameters<br>
residue: The residue in question (residue)<br>
atomname: The atomname to add (string)<br>
Returns<br>
1 if successful, 0 otherwise</tt></dd></dl>
</td></tr></table></td></tr></table><p>
<table width="100%" cellspacing=0 cellpadding=2 border=0 summary="section">
<tr bgcolor="#55aa55">
<td colspan=3 valign=bottom> <br>
<font color="#ffffff" face="helvetica, arial"><big><strong>Data</strong></big></font></td></tr>
<tr><td bgcolor="#55aa55"><tt> </tt></td><td> </td>
<td width="100%"><strong>AAPATH</strong> = 'dat/AA.xml'<br>
<strong>AAS</strong> = ['ALA', 'ARG', 'ASH', 'ASN', 'ASP', 'CYS', 'CYM', 'GLN', 'GLU', 'GLH', 'GLY', 'HIS', 'HID', 'HIE', 'HIP', 'HSD', 'HSE', 'HSP', 'ILE', 'LEU', ...]<br>
<strong>BACKBONE</strong> = ['N', 'CA', 'C', 'O', 'O2', 'HA', 'HN', 'H', 'tN']<br>
<strong>BONDED_SS_LIMIT</strong> = 2.5<br>
<strong>BUMP_DIST</strong> = 2.0<br>
<strong>BUMP_HDIST</strong> = 1.5<br>
<strong>BUMP_HEAVY_SIZE</strong> = 1.0<br>
<strong>BUMP_HYDROGEN_SIZE</strong> = 0.5<br>
<strong>CELL_SIZE</strong> = 2<br>
<strong>DIHEDRAL</strong> = 57.2958<br>
<strong>INSTALLDIR</strong> = '/Users/d3y382/pdb2pqr/'<br>
<strong>NAPATH</strong> = 'dat/NA.xml'<br>
<strong>NAS</strong> = ['A', 'A5', 'A3', 'C', 'C5', 'C3', 'G', 'G5', 'G3', 'T', 'T5', 'T3', 'U', 'U5', 'U3', 'RA', 'RG', 'RC', 'RU', 'DA', ...]<br>
<strong>PATCHPATH</strong> = 'dat/PATCHES.xml'<br>
<strong>PEPTIDE_DIST</strong> = 1.7<br>
<strong>REPAIR_LIMIT</strong> = 10<br>
<strong>SMALL</strong> = 1e-07<br>
<strong>TMPDIR</strong> = 'tmp/'<br>
<strong>__author__</strong> = 'Jens Erik Nielsen, Todd Dolinsky, Yong Huang'<br>
<strong>__date__</strong> = '1 August 2008'<br>
<strong>lineParsers</strong> = {'ANISOU': <class 'src.pdb.ANISOU'>, 'ATOM': <class 'src.pdb.ATOM'>, 'AUTHOR': <class 'src.pdb.AUTHOR'>, 'CAVEAT': <class 'src.pdb.CAVEAT'>, 'CISPEP': <class 'src.pdb.CISPEP'>, 'COMPND': <class 'src.pdb.COMPND'>, 'CONECT': <class 'src.pdb.CONECT'>, 'CRYST1': <class 'src.pdb.CRYST1'>, 'DBREF': <class 'src.pdb.DBREF'>, 'END': <class 'src.pdb.END'>, ...}</td></tr></table><p>
<table width="100%" cellspacing=0 cellpadding=2 border=0 summary="section">
<tr bgcolor="#7799ee">
<td colspan=3 valign=bottom> <br>
<font color="#ffffff" face="helvetica, arial"><big><strong>Author</strong></big></font></td></tr>
<tr><td bgcolor="#7799ee"><tt> </tt></td><td> </td>
<td width="100%">Jens Erik Nielsen, Todd Dolinsky, Yong Huang</td></tr></table>
</body></html>
|