1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
|
#!/usr/bin/python3
#
# pKa calculations with APBS
#
# Copyright University College Dublin & Washington University St. Louis 2004-2007
# All rights reserved
#
#
# Get paths
#
debug=False
import optparse
import sys, os
from .pKa_base import *
print(__file__)
import os
try:
file_name=__file__
if file_name[:2]=='./':
scriptpath=os.getcwd()
else:
scriptpath=os.path.join(os.getcwd(),os.path.split(file_name)[0])
if scriptpath[-1] == "/":
scriptpath=scriptpath[:-1]
except:
scriptpath=os.path.split(sys.argv[0])[0]
if scriptpath=='.':
scriptpath=os.getcwd()
#
# Add to import path
#
pdb2pqr_path=os.path.split(scriptpath)[0]
sys.path.append(pdb2pqr_path)
#
# Imports - these should be cleaned up
#
import string
import math
import string
import getopt
import time
from src import pdb
from src import utilities
from src import structures
from src import routines
from src import protein
from src import server
from src.pdb import *
from src.utilities import *
from src.structures import *
from src.definitions import *
from src.forcefield import *
from src.routines import *
from src.protein import *
from src.server import *
from io import *
from src.hydrogens import *
def usage(x):
#
# Print usage guidelines
#
print('Usage: pka.py --ff <forcefield> --lig <ligand in MOL2> --pdie <protein diel cons> --maps <1 for using provided 3D maps; 2 for genereting new maps>')
print('--xdiel <xdiel maps> --ydiel <ydiel maps> --zdiel <zdiel maps> --kappa <ion-accessibility map> ')
print('--smooth <st.dev [A] of Gaussian smooting of 3D maps at the boundary, bandthwith=3 st.dev> <pdbfile>')
print('Force field can be amber, charmm and parse')
print()
return
#
# --------------------------------------------------
#
def startpKa():
"""
Function for starting pKa script from the command line.
Returns
protein: The protein object as generated by PDB2PQR
routines: The routines object as generated by PDB2PQR
forcefield: The forcefield object as generated by PDB2PQR
"""
print()
print('PDB2PQR pKa calculations')
print()
import optparse
parser = optparse.OptionParser()
##
## set optparse options
##
parser.add_option(
'-v','--verbose',
dest='verbose',
action="store_true",
default=False,
)
parser.add_option(
'--pdie',
dest='pdie',
default=8,
type='int',
help='<protein dielectric constant>',
)
parser.add_option(
'--sdie',
dest='sdie',
default=80,
type='int',
help='<solvent dielectric constant>',
)
parser.add_option(
'--ff',
dest='ff',
type='choice',
default='parse',
choices=("amber","AMBER","charmm","CHARMM","parse","PARSE",),
help='<force field (amber, charmm, parse)>',
)
parser.add_option(
'--ligand',
dest='ligand',
type='str',
action='append',
default=[],
help='<ligand in MOL2 format>',
)
parser.add_option(
'--maps',
dest='maps',
default=None,
type='int',
help='<1 for using provided 3D maps; 2 for genereting new maps>',
)
parser.add_option(
'--xdiel',
dest='xdiel',
default=None,
type='str',
help='<xdiel maps>',
)
parser.add_option(
'--ydiel',
dest='ydiel',
default=None,
type='str',
help='<ydiel maps>',
)
parser.add_option(
'--zdiel',
dest='zdiel',
default=None,
type='str',
help='<zdiel maps>',
)
parser.add_option(
'--kappa',
dest='kappa',
default=None,
type='str',
help='<ion-accessibility map>',
)
parser.add_option(
'--smooth',
dest='sd',
default=None,
type='float',
help='<st.dev [A] of Gaussian smooting of 3D maps at the boundary, bandthwith=3 st.dev>',
)
#
# Cut off energy for calculating non-charged-charged interaction energies
#
parser.add_option('--pairene',dest='pairene',type='float',default=1.0,
help='Cutoff energy in kT for calculating non charged-charged interaction energies. Default: %default')
#
# Options for doing partial calculations
#
parser.add_option('--res_energy',
dest='desolvation_res',
default=[],
action='append',
type='string',
help='Calculate desolvation energy and interaction energy for this residue in its default protonation state. Protonation states can be specified with the --protonation_state argument')
parser.add_option('--PS_file',dest='PS_file',default='',type='string',action='store',help='Set protonation states according to the pdb2pka protonation state file (option --PS_file)')
(options,args,) = parser.parse_args()
##
## parse optparse options
##
ff = options.ff.lower()
pdie = options.pdie
verbose = options.verbose
maps = options.maps
xdiel = options.xdiel
ydiel = options.ydiel
zdiel = options.zdiel
kappa = options.kappa
sd = options.sd
if verbose == False:
verbose = 0
elif verbose == True:
verbose = 1
#
# Find the PDB file
#
if len(args) != 2:
sys.stderr.write("Usage: pka.py [options] <pdbfile> <output directory>\n")
sys.exit(0)
input_path = args[0]
output_path = args[1]
#
# Call the pre_init function
#
return pre_init(pdbfilename=input_path,
output_dir=output_path,
ff=ff,
pdie=pdie,
maps=maps,
xdiel=xdiel,
ydiel=ydiel,
zdiel=zdiel,
kappa=kappa,
sd=sd,
options=options),options
#
# ----
#
def pre_init(pdbfilename=None,
output_dir=None,
ff=None,
verbose=1,
pdie=8.0,
maps=None,
xdiel=None,
ydiel=None,
zdiel=None,
kappa=None,
sd=None,
options=None):
"""This function cleans the PDB and prepares the APBS input file"""
#
# remove hydrogen atoms
#
from . import pka_help
pka_help.remove_hydrogens(pdbfilename)
#
# Get the PDBfile
#
global pdbfile_name
pdbfile_name=pdbfilename
pdbfile = getPDBFile(pdbfilename)
pdblist, errlist = readPDB(pdbfile)
#
# if len(pdblist) == 0 and len(errlist) == 0:
# print "Unable to find file %s!\n" % path
# os.remove(path)
# sys.exit(2)
if len(errlist) != 0 and verbose:
print("Warning: %s is a non-standard PDB file.\n" %pdbfilename)
print(errlist)
if verbose:
print("Beginning PDB2PQR...\n")
#
# Read the definition file
#
myDefinition = Definition()
ligand_titratable_groups=None
#
#
# Choose whether to include the ligand or not
#
# Add the ligand to the pdb2pqr arrays
#
Lig=None
MOL2FLAG = False
if not options.ligand:
dummydef = Definition()
myProtein = Protein(pdblist, dummydef)
else:
#
# Mol2 ligands and PDB ligands are treated differently
#
if options.ligand!=[]:
for ligand in options.ligand:
#
# Open ligand mol2 file
#
if os.path.isfile(ligand):
ligfd=open(ligand, 'rU')
else:
print('skipping ligand',ligand)
continue
#
# Read the ligand into Paul's code
#
from .ligandclean import ligff
myProtein, myDefinition, Lig = ligff.initialize(myDefinition, ligfd, pdblist, verbose)
#
# Create the ligand definition from the mol2 data
#
#import NEWligand_topology
#MOL2FLAG = True # somethign is rotten here
##
#X=NEWligand_topology.get_ligand_topology(Lig.lAtoms,MOL2FLAG)
#
# Add it to the 'official' definition
#
#ligresidue=myDefinition.parseDefinition(X.lines, 'LIG', 2)
#myDefinition.AAdef.addResidue(ligresidue)
#
# Look for titratable groups in the ligand
#
#print '==============================\n================================\n======================='
#ligand_titratable_groups=X.find_titratable_groups()
#print '==============================\n================================\n======================='
#print "ligand_titratable_groups", ligand_titratable_groups
#
# ------------------------------------------------------
# Creation of ligand definition and identification of ligand titgrps done
# Start loading everything into PDB2PQR
#
# Append the ligand data to the end of the PDB data
#
#newpdblist=[]
# First the protein
#for line in pdblist:
# if isinstance(line, END) or isinstance(line,MASTER):
# continue
# newpdblist.append(line)
## Now the ligand
#for e in Lig.lAtoms:
# newpdblist.append(e)
#
# Add a TER and an END record for good measure
#
#newpdblist.append(TER)
#newpdblist.append(END)
#
# Let PDB2PQR parse the entire file
#
#myProtein = Protein(newpdblist)
#
# Post-Processing for adding sybylTypes to lig-atoms in myProtein
# Jens: that's the quick and easy solution
#
#for rrres in myProtein.chainmap['L'].residues:
# for aaat in rrres.atoms:
# for ligatoms in Lig.lAtoms:
# if ligatoms.name == aaat.name:
# aaat.sybylType = ligatoms.sybylType
# #
# # setting the formal charges
# if ligatoms.sybylType == "O.co2":
# aaat.formalcharge = -0.5
# else: aaat.formalcharge = 0.0
# xxxlll = []
# for xxx in ligatoms.lBondedAtoms:
# xxxlll.append(xxx.name)
# aaat.intrabonds = xxxlll
# #
# # charge initialisation must happen somewhere else
# # but i don't know where...
# aaat.charge = 0.0#
#
#
# =======================================================================
#
# We have identified the structural elements, now contiue with the setup
#
# Print something for some reason?
#
if verbose:
print("Created protein object -")
print("\tNumber of residues in protein: %s" % myProtein.numResidues())
print("\tNumber of atoms in protein : %s" % myProtein.numAtoms())
#
# Set up all other routines
#
myRoutines = Routines(myProtein, verbose) #myDefinition)
myRoutines.updateResidueTypes()
myRoutines.updateSSbridges()
myRoutines.updateBonds()
myRoutines.setTermini()
myRoutines.updateInternalBonds()
myRoutines.applyNameScheme(Forcefield(ff, myDefinition, None))
myRoutines.findMissingHeavy()
myRoutines.addHydrogens()
myRoutines.debumpProtein()
#myRoutines.randomizeWaters()
myProtein.reSerialize()
#
# Inject the information on hydrogen conformations in the HYDROGENS.DAT arrays
# We get this information from ligand_titratable_groups
#
from src.hydrogens import hydrogenRoutines
myRoutines.updateInternalBonds()
myRoutines.calculateDihedralAngles()
myhydRoutines = hydrogenRoutines(myRoutines)
#
# Here we should inject the info!!
#
myhydRoutines.setOptimizeableHydrogens()
myhydRoutines.initializeFullOptimization()
myhydRoutines.optimizeHydrogens()
myhydRoutines.cleanup()
myRoutines.setStates()
#
# Choose the correct forcefield
#
myForcefield = Forcefield(ff, myDefinition, None)
if Lig:
hitlist, misslist = myRoutines.applyForcefield(myForcefield)
#
# Can we get charges for the ligand?
#
templist=[]
ligsuccess=False
for residue in myProtein.getResidues():
if isinstance(residue, LIG):
templist = []
Lig.make_up2date(residue)
net_charge=0.0
print('Ligand',residue)
print('Atom\tCharge\tRadius')
for atom in residue.getAtoms():
if atom.mol2charge:
atom.ffcharge=atom.mol2charge
else:
atom.ffcharge = Lig.ligand_props[atom.name]["charge"]
#
# Find the net charge
#
net_charge=net_charge+atom.ffcharge
#
# Assign radius
#
atom.radius = Lig.ligand_props[atom.name]["radius"]
print('%s\t%6.4f\t%6.4f' %(atom.name,atom.ffcharge,atom.radius))
if atom in misslist:
misslist.pop(misslist.index(atom))
templist.append(atom)
#
# Store the charge and radius in the atom instance for later use
# This really should be done in a nicer way, but this will do for now
#
atom.secret_radius=atom.radius
atom.secret_charge=atom.ffcharge
#
#
charge = residue.getCharge()
if abs(charge - round(charge)) > 0.01:
# Ligand parameterization failed
myProtein.residues.remove(residue)
raise Exception('Non-integer charge on ligand: %8.5f' %charge)
else:
ligsuccess = 1
# Mark these atoms as hits
hitlist = hitlist + templist
#
# Print the net charge
#
print('Net charge for ligand %s is: %5.3f' %(residue.name,net_charge))
#
# Temporary fix; if ligand was successful, pull all ligands from misslist
# Not sure if this is needed at all here ...? (Jens wrote this)
#
if ligsuccess:
templist = misslist[:]
for atom in templist:
if isinstance(atom.residue, Amino) or isinstance(atom.residue, Nucleic): continue
misslist.remove(atom)
if verbose:
print("Created protein object (after processing myRoutines) -")
print("\tNumber of residues in protein: %s" % myProtein.numResidues())
print("\tNumber of atoms in protein : %s" % myProtein.numAtoms())
#
# Create the APBS input file
#
import src.psize
size=src.psize.Psize()
method=""
split=0
from . import inputgen_pKa
igen = inputgen_pKa.inputGen(pdbfilename)
#
# For convenience
#
igen.pdie = pdie
print( 'Setting protein dielectric constant to ',igen.pdie)
igen.sdie=options.sdie
igen.maps=maps
if maps==1:
print( "Using dielectric and mobile ion-accessibility function maps in PBE")
if xdiel:
igen.xdiel = xdiel
else:
sys.stderr.write ("X dielectric map is missing\n")
usage(2)
sys.exit(0)
if ydiel:
igen.ydiel = ydiel
else:
sys.stderr.write ("Y dielectric map is missing\n")
usage(2)
sys.exit(0)
if zdiel:
igen.zdiel = zdiel
else:
sys.stderr.write ("Z dielectric map is missing\n")
usage(2)
sys.exit(0)
print('Setting dielectric function maps: %s, %s, %s'%(igen.xdiel,igen.ydiel,igen.zdiel))
if kappa:
igen.kappa = kappa
else:
sys.stderr.write ("Mobile ion-accessibility map is missing\n")
usage(2)
sys.exit(0)
print('Setting mobile ion-accessibility function map to: ',igen.kappa)
if sd:
xdiel_smooth, ydiel_smooth, zdiel_smooth = smooth(xdiel,ydiel,zdiel)
igen.xdiel = xdiel_smooth
igen.ydiel = ydiel_smooth
igen.zdiel = zdiel_smooth
#
# Return all we need
#
return myProtein, myRoutines, myForcefield,igen, ligand_titratable_groups, maps, sd
#
# --------------
#
if __name__ == "__main__":
(protein, routines, forcefield,apbs_setup, ligand_titratable_groups, maps, sd), options = startpKa()
from . import pka_routines
mypkaRoutines = pka_routines.pKaRoutines(protein, routines, forcefield, apbs_setup, maps, sd,
pdbfile_name,
options=options)
#
# Debugging
#
#if debug:
# CM.init_protein(mypkaRoutines)
#
# Deal with ligands
#
#if ligand_titratable_groups:
# print "lig (before mypKaRoutines) ", ligand_titratable_groups['titratableatoms']
# mypkaRoutines.insert_new_titratable_group(ligand_titratable_groups)
#
# What should we do?
#
print('Doing full pKa calculation')
mypkaRoutines.runpKa()
# state=1
# if state==0:
# import pMC_mult
# #
# # System definition
# #
# groups=2
# acidbase=[-1,1] # 1 if group is a base, -1 if group is an acid
# intpkas=[3.4,0.0,0.0,0.0,0.0,
# 9.6,0.0,0.0,0.0,0.0]
# is_charged_state=[1,0,0,0,0,
# 1,0,0,0,0]
# #
# # Automatic configuration from here on
# #
# states=len(intpkas)/groups #States per group
# state_counter=[]
# linear=[]
# names=[]
# for group in range(groups):
# #
# # Names
# #
# names.append('Group %d' %group)
# #
# # Add state_counter
# #
# state_counter.append(states)
# #
# # Matrix
# #
# for group2 in range(groups):
# for state1 in range(states):
# for state2 in range(states):
# if state1==0 and state2==0 and group!=group2:
# linear.append(-2.3)
# else:
# linear.append(0.0)
# mcsteps=50000
# phstart=2.0
# phend=14.0
# phstep=0.1
# #
# # Call our little C++ module
# #
# FAST=pMC_mult.MC(intpkas,linear,acidbase,state_counter,is_charged_state)
# FAST.set_MCsteps(int(mcsteps))
# print 'Starting to calculate pKa values'
# pKavals=FAST.calc_pKas(phstart,phend,phstep)
# count=0
# print '\n****************************'
# print 'Final pKa values'
# pkas={}
# for name in names:
# pkas[name]={'pKa':pKavals[count]}
# print '%s pKa: %5.2f ' %(name,pKavals[count])
# count=count+1
# #
# # Write the WHAT IF pKa file
# #
# for name in names:
# pkas[name]['modelpK']=0.0
# pkas[name]['desolv']=0.0
# pkas[name]['backgr']=0.0
# pkas[name]['delec']=0.0
# import pKaTool.pKaIO
# X=pKaTool.pKaIO.pKaIO()
# X.write_pka('test.pdb.PKA.DAT',pkas)
# #
# # Get the charges
# #
# charges={}
# pH_start=pKavals[count]
# pH_step=pKavals[count+1]
# num_pHs=pKavals[count+2]
# count=count+2
# for name in names:
# charges[name]={}
# for x in range(int(num_pHs)):
# count=count+1
# pH=pKavals[count]
# count=count+1
# charges[name][pH]=pKavals[count]
# pH=pH+pH_step
# if pKavals[count+1]==999.0 and pKavals[count+2]==-999.0:
# count=count+2
# else:
# print 'Something is wrong'
# print pKavals[count:count+30]
# raise Exception('Incorrect data format from pMC_mult')
# elif state==1:
# #
# # Do a real pKa calculation
# #
# (protein, routines, forcefield,apbs_setup, ligand_titratable_groups, maps, sd), options = startpKa()
# import pka_routines
# mypkaRoutines = pka_routines.pKaRoutines(protein, routines, forcefield, apbs_setup, maps, sd,
# pdbfile_name,
# options=options)
# #
# # Debugging
# #
# #if debug:
# # CM.init_protein(mypkaRoutines)
# #
# # Deal with ligands
# #
# #if ligand_titratable_groups:
# # print "lig (before mypKaRoutines) ", ligand_titratable_groups['titratableatoms']
# # mypkaRoutines.insert_new_titratable_group(ligand_titratable_groups)
# #
# # What should we do?
# #
# if options.desolvation_res:
# print 'Doing desolvation for single residues',options.desolvation_res
# mypkaRoutines.calculate_desolvation_for_residues(residues=options.desolvation_res)
# else:
# print 'Doing full pKa calculation'
# mypkaRoutines.runpKa()
# elif state==2:
# #
# # Just assign charges
# #
# (protein, routines, forcefield,apbs_setup, ligand_titratable_groups,maps,sd),options = startpKa()
# for chain in protein.getChains():
# for residue in chain.get("residues"):
# for atom in residue.get("atoms"):
# atomname = atom.get("name")
# charge, radius = forcefield.getParams(residue, atomname)
# print '%2s %4s %3d %4s %5.2f %5.2f' %(chain.chainID,residue.name,residue.resSeq,atomname,charge,radius)
|