File: pka_old.py

package info (click to toggle)
pdb2pqr 2.1.1%2Bdfsg-7%2Bdeb11u1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 47,044 kB
  • sloc: python: 44,152; cpp: 9,847; xml: 9,092; sh: 79; makefile: 55; ansic: 36
file content (714 lines) | stat: -rw-r--r-- 23,766 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
#!/usr/bin/python3
#
# pKa calculations with APBS
#
# Copyright University College Dublin & Washington University St. Louis 2004-2007
# All rights reserved
#

#
# Get paths
#
debug=False
import optparse
import sys, os
from .pKa_base import *

print(__file__)
import os
try:
    file_name=__file__
    if file_name[:2]=='./':
        scriptpath=os.getcwd()
    else:
        scriptpath=os.path.join(os.getcwd(),os.path.split(file_name)[0])
        if scriptpath[-1] == "/":
            scriptpath=scriptpath[:-1]
except:
    scriptpath=os.path.split(sys.argv[0])[0]
    if scriptpath=='.':
        scriptpath=os.getcwd()
#
# Add to import path
#
pdb2pqr_path=os.path.split(scriptpath)[0]
sys.path.append(pdb2pqr_path)
#
# Imports - these should be cleaned up
#
import string
import math
import string
import getopt
import time
from src import pdb
from src import utilities
from src import structures
from src import routines
from src import protein
from src import server
from src.pdb import *
from src.utilities import *
from src.structures import *
from src.definitions import *
from src.forcefield import *  
from src.routines import *
from src.protein import *
from src.server import *
from io import *
from src.hydrogens import *


def usage(x):
    #
    # Print usage guidelines
    #
    print('Usage: pka.py --ff <forcefield> --lig <ligand in MOL2> --pdie <protein diel cons> --maps <1 for using provided 3D maps; 2 for genereting new maps>')
    print('--xdiel <xdiel maps> --ydiel <ydiel maps> --zdiel <zdiel maps> --kappa <ion-accessibility map> ')
    print('--smooth <st.dev [A] of Gaussian smooting of 3D maps at the boundary, bandthwith=3 st.dev> <pdbfile>')
    print('Force field can be amber, charmm and parse')
    print()
    return

#
# --------------------------------------------------
#

def startpKa():
    """
        Function for starting pKa script from the command line.

        Returns
            protein:    The protein object as generated by PDB2PQR
            routines:   The routines object as generated by PDB2PQR
            forcefield: The forcefield object as generated by PDB2PQR
    """
    print()
    print('PDB2PQR pKa calculations')
    print()
    
    import optparse
    parser = optparse.OptionParser()

    ##
    ## set optparse options
    ##
    parser.add_option(
        '-v','--verbose',
        dest='verbose',
        action="store_true",
        default=False,
        )
    parser.add_option(
        '--pdie',
        dest='pdie',
        default=8,
        type='int',
        help='<protein dielectric constant>',
        )
    parser.add_option(
        '--sdie',
        dest='sdie',
        default=80,
        type='int',
        help='<solvent dielectric constant>',
        )
    parser.add_option(
        '--ff',
        dest='ff',
        type='choice',
        default='parse',
        choices=("amber","AMBER","charmm","CHARMM","parse","PARSE",),
        help='<force field (amber, charmm, parse)>',
        )
    parser.add_option(
        '--ligand',
        dest='ligand',
        type='str',
        action='append',
        default=[],
        help='<ligand in MOL2 format>',
        )
    parser.add_option(
        '--maps',
        dest='maps',
        default=None,
        type='int',
        help='<1 for using provided 3D maps; 2 for genereting new maps>',
        )
    parser.add_option(
        '--xdiel',
        dest='xdiel',
        default=None,
        type='str',
        help='<xdiel maps>',
        )
    parser.add_option(
        '--ydiel',
        dest='ydiel',
        default=None,
        type='str',
        help='<ydiel maps>',
        )
    parser.add_option(
        '--zdiel',
        dest='zdiel',
        default=None,
        type='str',
        help='<zdiel maps>',
        )
    parser.add_option(
        '--kappa',
        dest='kappa',
        default=None,
        type='str',
        help='<ion-accessibility map>',
        )
    parser.add_option(
        '--smooth',
        dest='sd',
        default=None,
        type='float',
        help='<st.dev [A] of Gaussian smooting of 3D maps at the boundary, bandthwith=3 st.dev>',
        )
    #
    # Cut off energy for calculating non-charged-charged interaction energies
    #
    parser.add_option('--pairene',dest='pairene',type='float',default=1.0,
                      help='Cutoff energy in kT for calculating non charged-charged interaction energies. Default: %default')
    #
    # Options for doing partial calculations
    #
    parser.add_option('--res_energy',
                      dest='desolvation_res',
                      default=[],
                      action='append',
                      type='string',
                      help='Calculate desolvation energy and interaction energy for this residue in its default protonation state. Protonation states can be specified with the --protonation_state argument')
    parser.add_option('--PS_file',dest='PS_file',default='',type='string',action='store',help='Set protonation states according to the pdb2pka protonation state file (option --PS_file)')
    (options,args,) = parser.parse_args()

    ##
    ## parse optparse options
    ##
    ff = options.ff.lower()
    pdie = options.pdie
    verbose = options.verbose
    maps = options.maps
    xdiel = options.xdiel
    ydiel = options.ydiel
    zdiel = options.zdiel
    kappa = options.kappa
    sd = options.sd
    if verbose == False:
        verbose = 0
    elif verbose == True:
        verbose = 1

    #
    # Find the PDB file
    #
    if len(args) != 2:
        sys.stderr.write("Usage: pka.py [options] <pdbfile> <output directory>\n")
        sys.exit(0)
    input_path = args[0]
    output_path = args[1]

    #
    # Call the pre_init function
    #
    return pre_init(pdbfilename=input_path,
                    output_dir=output_path,
                    ff=ff,
                    pdie=pdie,
                    maps=maps,
                    xdiel=xdiel,
                    ydiel=ydiel,
                    zdiel=zdiel,
                    kappa=kappa,
                    sd=sd,
                    options=options),options



#
# ----
#


def pre_init(pdbfilename=None,
             output_dir=None,
             ff=None,
             verbose=1,
             pdie=8.0,
             maps=None,
             xdiel=None,
             ydiel=None,
             zdiel=None,
             kappa=None,
             sd=None,
             options=None):
    """This function cleans the PDB and prepares the APBS input file"""
    #
    # remove hydrogen atoms
    #
    from . import pka_help
    pka_help.remove_hydrogens(pdbfilename)
    #
    # Get the PDBfile
    #
    global pdbfile_name
    pdbfile_name=pdbfilename
    pdbfile = getPDBFile(pdbfilename)
    pdblist, errlist = readPDB(pdbfile)
    #
#     if len(pdblist) == 0 and len(errlist) == 0:
#         print "Unable to find file %s!\n" % path
#         os.remove(path)
#         sys.exit(2)

    if len(errlist) != 0 and verbose:
        print("Warning: %s is a non-standard PDB file.\n" %pdbfilename)
        print(errlist)

    if verbose:
        print("Beginning PDB2PQR...\n")
    #
    # Read the definition file
    #
    myDefinition = Definition()
    ligand_titratable_groups=None
    #
    #
    # Choose whether to include the ligand or not
    #
    # Add the ligand to the pdb2pqr arrays
    #
    Lig=None
    MOL2FLAG = False 
    if not options.ligand:
        dummydef = Definition()
        myProtein = Protein(pdblist, dummydef)
    else:
        #
        # Mol2 ligands and PDB ligands are treated differently
        #
        if options.ligand!=[]:
            for ligand in options.ligand:
                #
                # Open ligand mol2 file
                #
                if os.path.isfile(ligand):
                    ligfd=open(ligand, 'rU')
                else:
                    print('skipping ligand',ligand)
                    continue
                #
                # Read the ligand into Paul's code
                #
                from .ligandclean import ligff
                myProtein, myDefinition, Lig = ligff.initialize(myDefinition, ligfd, pdblist, verbose)
                #
                # Create the ligand definition from the mol2 data
                #
                #import NEWligand_topology
                #MOL2FLAG = True # somethign is rotten here
                ##
                #X=NEWligand_topology.get_ligand_topology(Lig.lAtoms,MOL2FLAG)
                #
                # Add it to the 'official' definition
                #
                #ligresidue=myDefinition.parseDefinition(X.lines, 'LIG', 2)
                #myDefinition.AAdef.addResidue(ligresidue)
                #
                # Look for titratable groups in the ligand
                #
                #print '==============================\n================================\n======================='
                #ligand_titratable_groups=X.find_titratable_groups()
                #print '==============================\n================================\n======================='
                #print "ligand_titratable_groups", ligand_titratable_groups
            #
            # ------------------------------------------------------
            # Creation of ligand definition and identification of ligand titgrps done
            # Start loading everything into PDB2PQR
            #
            # Append the ligand data to the end of the PDB data
            #
            #newpdblist=[]
            # First the protein
            #for line in pdblist:
            #    if isinstance(line, END) or isinstance(line,MASTER):
            #        continue
            #    newpdblist.append(line)
            ## Now the ligand
            #for e in Lig.lAtoms:
            #    newpdblist.append(e)
            #
            # Add a TER and an END record for good measure
            #
            #newpdblist.append(TER)
            #newpdblist.append(END)
            #
            # Let PDB2PQR parse the entire file
            #
            #myProtein = Protein(newpdblist)
        #
        # Post-Processing for adding sybylTypes to lig-atoms in myProtein
        # Jens: that's the quick and easy solution
        #
        #for rrres in  myProtein.chainmap['L'].residues:
        #    for aaat in rrres.atoms:
        #        for ligatoms in Lig.lAtoms:
        #            if ligatoms.name == aaat.name:
        #                aaat.sybylType = ligatoms.sybylType
        #                #
        #                # setting the formal charges
        #                if ligatoms.sybylType == "O.co2":
        #                    aaat.formalcharge = -0.5
        #                else: aaat.formalcharge = 0.0
        #                xxxlll = []
        #                for xxx in ligatoms.lBondedAtoms:
        #                    xxxlll.append(xxx.name)
        #                aaat.intrabonds = xxxlll
        #                #
        #                # charge initialisation must happen somewhere else
        #                # but i don't know where...
        #                aaat.charge = 0.0#




        #
    #
    # =======================================================================
    #
    # We have identified the structural elements, now contiue with the setup
    #
    # Print something for some reason?
    #
    if verbose:
        print("Created protein object -")
        print("\tNumber of residues in protein: %s" % myProtein.numResidues())
        print("\tNumber of atoms in protein   : %s" % myProtein.numAtoms())
    #
    # Set up all other routines
    #
    myRoutines = Routines(myProtein, verbose) #myDefinition)
    myRoutines.updateResidueTypes()
    myRoutines.updateSSbridges()
    myRoutines.updateBonds()
    myRoutines.setTermini()
    myRoutines.updateInternalBonds()

    myRoutines.applyNameScheme(Forcefield(ff, myDefinition, None))
    myRoutines.findMissingHeavy()
    myRoutines.addHydrogens()
    myRoutines.debumpProtein()

    #myRoutines.randomizeWaters()
    myProtein.reSerialize()
    #
    # Inject the information on hydrogen conformations in the HYDROGENS.DAT arrays
    # We get this information from ligand_titratable_groups
    #
    from src.hydrogens import hydrogenRoutines
    myRoutines.updateInternalBonds()
    myRoutines.calculateDihedralAngles()
    myhydRoutines = hydrogenRoutines(myRoutines)
    #
    # Here we should inject the info!!
    #
    myhydRoutines.setOptimizeableHydrogens()
    myhydRoutines.initializeFullOptimization()
    myhydRoutines.optimizeHydrogens()
    myhydRoutines.cleanup()
    myRoutines.setStates()

    #
    # Choose the correct forcefield
    #
    myForcefield = Forcefield(ff, myDefinition, None)
    if Lig:
        hitlist, misslist = myRoutines.applyForcefield(myForcefield)
        #
        # Can we get charges for the ligand?
        #
        templist=[]
        ligsuccess=False
        for residue in myProtein.getResidues():
            if isinstance(residue, LIG):
                templist = []
                Lig.make_up2date(residue)
                net_charge=0.0
                print('Ligand',residue)
                print('Atom\tCharge\tRadius')
                for atom in residue.getAtoms():
                    if atom.mol2charge:
                        atom.ffcharge=atom.mol2charge
                    else:
                        atom.ffcharge = Lig.ligand_props[atom.name]["charge"]
                    #
                    # Find the net charge
                    #
                    net_charge=net_charge+atom.ffcharge
                    #
                    # Assign radius
                    #
                    atom.radius = Lig.ligand_props[atom.name]["radius"]
                    print('%s\t%6.4f\t%6.4f' %(atom.name,atom.ffcharge,atom.radius))
                    if atom in misslist:
                        misslist.pop(misslist.index(atom))
                        templist.append(atom)
                    #
                    # Store the charge and radius in the atom instance for later use
                    # This really should be done in a nicer way, but this will do for now
                    #
                    atom.secret_radius=atom.radius
                    atom.secret_charge=atom.ffcharge
                    #
                    #
                    
                charge = residue.getCharge()
                if abs(charge - round(charge)) > 0.01:
                    # Ligand parameterization failed
                    myProtein.residues.remove(residue)
                    raise Exception('Non-integer charge on ligand: %8.5f' %charge)
                else:
                    ligsuccess = 1
                    # Mark these atoms as hits
                    hitlist = hitlist + templist
                #
                # Print the net charge
                #
                print('Net charge for ligand %s is: %5.3f' %(residue.name,net_charge))
        #
        # Temporary fix; if ligand was successful, pull all ligands from misslist
       # Not sure if this is needed at all here ...? (Jens wrote this)
        #
        if ligsuccess:
            templist = misslist[:]
            for atom in templist:
                if isinstance(atom.residue, Amino) or isinstance(atom.residue, Nucleic): continue
                misslist.remove(atom)                    
    
    if verbose:
        print("Created protein object (after processing myRoutines) -")
        print("\tNumber of residues in protein: %s" % myProtein.numResidues())
        print("\tNumber of atoms in protein   : %s" % myProtein.numAtoms())
    #
    # Create the APBS input file
    #
    import src.psize
    size=src.psize.Psize()

    method=""
    split=0
    from . import inputgen_pKa
    igen = inputgen_pKa.inputGen(pdbfilename)
    #
    # For convenience
    #
    igen.pdie = pdie
    print( 'Setting protein dielectric constant to ',igen.pdie)
    igen.sdie=options.sdie
    igen.maps=maps
    if maps==1:
        print( "Using dielectric and mobile ion-accessibility function maps in PBE")
        if xdiel:
            igen.xdiel = xdiel
        else:
            sys.stderr.write ("X dielectric map is missing\n")
            usage(2)
            sys.exit(0)
        if ydiel:
            igen.ydiel = ydiel
        else:
            sys.stderr.write ("Y dielectric map is missing\n")
            usage(2)
            sys.exit(0)
        if zdiel:
            igen.zdiel = zdiel
        else:
            sys.stderr.write ("Z dielectric map is missing\n")
            usage(2)
            sys.exit(0)
        
        print('Setting dielectric function maps: %s, %s, %s'%(igen.xdiel,igen.ydiel,igen.zdiel))
        
        if kappa:
            igen.kappa = kappa
        else:
            sys.stderr.write ("Mobile ion-accessibility map is missing\n")
            usage(2)
            sys.exit(0)
            
        print('Setting mobile ion-accessibility function map to: ',igen.kappa)
        
        if sd:
            xdiel_smooth, ydiel_smooth, zdiel_smooth = smooth(xdiel,ydiel,zdiel)
            igen.xdiel = xdiel_smooth
            igen.ydiel = ydiel_smooth
            igen.zdiel = zdiel_smooth
    #
    # Return all we need
    #
    return myProtein, myRoutines, myForcefield,igen, ligand_titratable_groups, maps, sd

#
# --------------
#
            
if __name__ == "__main__":
    
    (protein, routines, forcefield,apbs_setup, ligand_titratable_groups, maps, sd), options = startpKa()
    from . import pka_routines
    mypkaRoutines = pka_routines.pKaRoutines(protein, routines, forcefield, apbs_setup, maps, sd,
                                             pdbfile_name,
                                             options=options)
    #
    # Debugging
    #
    #if debug:
    #    CM.init_protein(mypkaRoutines)
    #
    # Deal with ligands
    #
    #if ligand_titratable_groups:
    #    print "lig (before mypKaRoutines) ", ligand_titratable_groups['titratableatoms']
    #    mypkaRoutines.insert_new_titratable_group(ligand_titratable_groups)
    #
    # What should we do?
    #
    print('Doing full pKa calculation')
    mypkaRoutines.runpKa()

#     state=1
#     if state==0:
#         import pMC_mult
#         #
#         # System definition
#         #
#         groups=2
#         acidbase=[-1,1] # 1 if group is a base, -1 if group is an acid
#         intpkas=[3.4,0.0,0.0,0.0,0.0,
#                  9.6,0.0,0.0,0.0,0.0] 
#         is_charged_state=[1,0,0,0,0,
#                           1,0,0,0,0]
#         #
#         # Automatic configuration from here on
#         #
#         states=len(intpkas)/groups #States per group
#         state_counter=[]
#         linear=[]
#         names=[]
#         for group in range(groups):
#             #
#             # Names
#             #
#             names.append('Group %d' %group)
#             #
#             # Add state_counter
#             #
#             state_counter.append(states)
#             #
#             # Matrix
#             #
#             for group2 in range(groups):
#                 for state1 in range(states):
#                     for state2 in range(states):
#                         if state1==0 and state2==0 and group!=group2:
#                             linear.append(-2.3)
#                         else:
#                             linear.append(0.0)
#         mcsteps=50000
#         phstart=2.0
#         phend=14.0
#         phstep=0.1
#         #
#         # Call our little C++ module
#         #
#         FAST=pMC_mult.MC(intpkas,linear,acidbase,state_counter,is_charged_state)
#         FAST.set_MCsteps(int(mcsteps))
#         print 'Starting to calculate pKa values'
#         pKavals=FAST.calc_pKas(phstart,phend,phstep)
#         count=0
#         print '\n****************************'
#         print 'Final pKa values'
#         pkas={}
#         for name in names:
#             pkas[name]={'pKa':pKavals[count]}
#             print '%s pKa: %5.2f ' %(name,pKavals[count])
#             count=count+1
#         #
#         # Write the WHAT IF pKa file
#         #
#         for name in names:
#             pkas[name]['modelpK']=0.0
#             pkas[name]['desolv']=0.0
#             pkas[name]['backgr']=0.0
#             pkas[name]['delec']=0.0
#         import pKaTool.pKaIO
#         X=pKaTool.pKaIO.pKaIO()
#         X.write_pka('test.pdb.PKA.DAT',pkas)
#         #
#         # Get the charges
#         #
#         charges={}
#         pH_start=pKavals[count]
#         pH_step=pKavals[count+1]
#         num_pHs=pKavals[count+2]
#         count=count+2
#         for name in names:
#             charges[name]={}
#             for x in range(int(num_pHs)):
#                 count=count+1
#                 pH=pKavals[count]
#                 count=count+1
#                 charges[name][pH]=pKavals[count]
#                 pH=pH+pH_step
#             if pKavals[count+1]==999.0 and pKavals[count+2]==-999.0:
#                 count=count+2
#             else:
#                 print 'Something is wrong'
#                 print pKavals[count:count+30]
#                 raise Exception('Incorrect data format from pMC_mult')
#     elif state==1:
#         #
#         # Do a real pKa calculation
#         #
#         (protein, routines, forcefield,apbs_setup, ligand_titratable_groups, maps, sd), options = startpKa()
#         import pka_routines
#         mypkaRoutines = pka_routines.pKaRoutines(protein, routines, forcefield, apbs_setup, maps, sd,
#                                                  pdbfile_name,
#                                                  options=options)
#         #
#         # Debugging
#         #
#         #if debug:
#         #    CM.init_protein(mypkaRoutines)
#         #
#         # Deal with ligands
#         #
#         #if ligand_titratable_groups:
#         #    print "lig (before mypKaRoutines) ", ligand_titratable_groups['titratableatoms']
#         #    mypkaRoutines.insert_new_titratable_group(ligand_titratable_groups)
#         #
#         # What should we do?
#         #
#         if options.desolvation_res:
#             print 'Doing desolvation for single residues',options.desolvation_res
#             mypkaRoutines.calculate_desolvation_for_residues(residues=options.desolvation_res)
#         else:
#             print 'Doing full pKa calculation'
#             mypkaRoutines.runpKa()
#     elif state==2:
#         #
#         # Just assign charges
#         #
#         (protein, routines, forcefield,apbs_setup, ligand_titratable_groups,maps,sd),options = startpKa()
#         for chain in protein.getChains():
#             for residue in chain.get("residues"):
#                 for atom in residue.get("atoms"):
#                     atomname = atom.get("name")
#                     charge, radius = forcefield.getParams(residue, atomname)
#                     print '%2s %4s %3d %4s %5.2f %5.2f' %(chain.chainID,residue.name,residue.resSeq,atomname,charge,radius)