File: pka_routines.py

package info (click to toggle)
pdb2pqr 2.1.1%2Bdfsg-7%2Bdeb11u1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 47,044 kB
  • sloc: python: 44,152; cpp: 9,847; xml: 9,092; sh: 79; makefile: 55; ansic: 36
file content (2508 lines) | stat: -rw-r--r-- 109,209 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
#
# pKa calculations with APBS
#
# Copyright University College Dublin & Washington University St. Louis 2004-2007
# All rights reserved
#
__date__="22 April, 2009"
__author__="Jens Erik Nielsen, Todd Dolinsky, Yong Huang, Tommy Carstensen"

debug=False
import os
import sys
from . import pKaIO_compat
from .pKa_base import *
import pickle
from . import pMC_mult
import math
import copy
import string

from .graph_cut.utils import create_protein_complex_from_matrix, process_desolv_and_background, curve_for_one_group
from .graph_cut.titration_curve import get_titration_curves
from .graph_cut.create_titration_output import create_output

if debug:
    from tkinter import *
    from .charge_mon import *

    CM=charge_mon()
else:
    CM=None

import shutil

from .pka_help import is_sameatom, titrate_one_group
from src.errors import PDB2PKAError

#
# --
#
# from src import pdb
# from src import utilities
# from src import structures
# from src import routines
# from src import protein
# from src import server
#from src.pdb import *
#from src.utilities import *
#from src.structures import *
#from src.definitions import *
#from src.forcefield import *
from src.routines import Routines
#from src.protein import *
#from src.server import *
#from StringIO import *
from src.hydrogens import hydrogenRoutines, hydrogenAmbiguity

#import ligandclean.ligff
from .apbs import runAPBS


#
# ----
#
path = os.path.dirname(__file__)
TITRATIONFILE = os.path.join(path,"TITRATION.DAT")

class pKaRoutines:
    """
        Class for running all pKa related functions
    """
    def __init__(self, protein, routines, forcefield, apbs_setup, output_dir, maps = None, sd =None,
                 restart=False, pairene=1.0, test_mode=False):
        """
            Initialize the class using needed objects

            Parameters
                protein:    The PDB2PQR protein object
                routines:   The PDB2PQR routines object
                forcefield: The PDB2PQR forcefield object
        """
        self.protein = protein
        self.routines = routines
        self.forcefield = forcefield
        self.apbs_setup=apbs_setup
        self.pairene = pairene

        self.output_dir=output_dir

        self.APBS=None

        #Output files
        self.output_files = {}
        self.output_files['pka_dat_file_path'] = os.path.join(self.output_dir, 'PKA.DAT')
        self.output_files['desolv_dat_file_path'] = os.path.join(self.output_dir, 'DESOLV.DAT')
        self.output_files['backgr_dat_file_path'] = os.path.join(self.output_dir, 'BACKGR.DAT')
        self.output_files['titcurv_dir'] = os.path.join(self.output_dir, 'TITCURV.DAT')
        self.output_files['matrix_dat_file_path'] = os.path.join(self.output_dir, 'MATRIX.DAT')
        self.output_files['interaction_matrix_dat_file_path'] = os.path.join(self.output_dir, 'INTERACTION_MATRIX.DAT')
        self.output_files['background_interaction_energies_file_path'] = os.path.join(self.output_dir,'background_interaction_energies.txt')
        self.output_files['desolvation_energies_file_path'] = os.path.join(self.output_dir, 'desolvation_energies.txt')

        #
        # Set the phidir - where results of apbscalcs are stored
        #
        if not test_mode:
            self.phidir=os.path.join(self.output_dir,'phidir')
            if not os.path.isdir(self.phidir):
                os.mkdir(self.phidir)

            self.pdb_dumps_dir=os.path.join(self.output_dir,'pdb_dumps')
            if not os.path.isdir(self.pdb_dumps_dir):
                os.mkdir(self.pdb_dumps_dir)

            self.titcurves_dir=os.path.join(self.output_dir,'titration_curves')
            if not os.path.isdir(self.titcurves_dir):
                os.mkdir(self.titcurves_dir)

            self.state_files=os.path.join(self.output_dir,'state_files')

            if restart:
                if os.path.isdir(self.state_files):
                    shutil.rmtree(self.state_files)
                if os.path.isfile(self.state_files):
                    raise ValueError('Target directory is a file! Aborting.')

                for output_file in list(self.output_files.values()):
                    if os.path.isfile(output_file):
                        os.remove(output_file)

            if not os.path.isdir(self.state_files):
                os.mkdir(self.state_files)


        self.pKagroups = self.readTitrationDefinition()

        self.pKas = []

        if not test_mode:
            myHydrogenRoutines = hydrogenRoutines(routines)
            self.hydrogenRoutines = myHydrogenRoutines
        #
        # Not sure this is the best place for the interaction energies...
        #
        self.matrix={}
        self.maps=maps
        self.sd=sd

        #Holding spot for reported warnings.
        self.warnings = []

        #Holding spot for ph values at 0.5 on titration curves.
        self.ph_at_0_5 = {}


    #
    # -----------------------------------------
    #


    def insert_new_titratable_group(self,ligand_titratable_groups):
        """Insert the new titratable groups in to self.pkagroups"""
        group_type=ligand_titratable_groups['type']
        if group_type in self.pKagroups:
            #
            # Now modify the group so that it will correspond to the group
            # we have in the ligand
            #
            ligand_name='LIG' #Note: we have to implement automatic determination of ligand name
            new_group=copy.deepcopy(self.pKagroups[group_type])
            new_group.DefTitrations[0].modelpKa=ligand_titratable_groups['modelpka']
            new_group.name='LIG'
            new_group.resname='LIG'
            self.pKagroups['LIG']=copy.deepcopy(new_group)
            atom_map=ligand_titratable_groups['matching_atoms']
            #
            # Insert definition into HYDROGEN arrays
            #
            for hdef in self.hydrogenRoutines.hydrodefs:
                if hdef.name==group_type:
                    newdef=copy.deepcopy(hdef)
                    newdef.name=ligand_name

                    #
                    # Change the names in each of the conformatinos
                    #
                    # The name of the H is not changed!
                    #
                    for conformation in newdef.conformations:
                        #
                        # Change the name of the atom that the H is bound to
                        #
                        if conformation.boundatom in atom_map:
                            conformation.boundatom=atom_map[conformation.boundatom]
                        #
                        # Change the name of the hydrogen
                        #
                        oldhname=conformation.hname
                        conformation.hname='H'+conformation.boundatom
                        #
                        # And then for the individual atom names
                        #
                        for atom in conformation.atoms:
                            if atom.name in atom_map:
                                atom.name=atom_map[atom.name]
                            elif atom.name==oldhname:
                                atom.name=conformation.hname
                    self.hydrogenRoutines.hydrodefs.append(copy.deepcopy(newdef))
        return

    def dump_protein_file(self, file_name, pdbfile=True):
        lines = self.protein.printAtoms(self.protein.getAtoms(), chainflag=True, pdbfile=pdbfile)
        with open(file_name,'w') as fd:
            self.routines.write( 'dumping protein state to '+ fd.name+'\n')
            for line in lines:
                fd.write(line)

    #
    # -----------------------------------------
    #

    def runpKa(self,ghost=None):
        """
        #    Main driver for running pKa calculations
        """
        self.findTitratableGroups()

        if self.maps==2:
            self.generateMaps()
        #
        # Are we calculating ghost titrations?
        #
        if ghost:
            """ Calculate Pairwise Interactions """
            potentialDifference=self.calculatePotentialDifferences()
            return potentialDifference
        else:
            #
            # Normal pKa calculation
            #
            self.calculateIntrinsicpKa()

            """ Calculate Pairwise Interactions """
            self.calculatePairwiseInteractions()

            """ Calculate Full pKa Value """
            self.calculatepKaValue()
            return

    #
    # -----------------------------------
    #

    def generateMaps(self):
        """
        # generate 3D maps using pdie and sdie
        """
        pKa = self.pKas[0]
        residue = pKa.residue
        pKaGroup = pKa.pKaGroup
        ambiguity = pKa.amb

        self.routines.write("-----> Generating initial coarse grid 3D dielectric and kappa maps\n")
        titration=pKaGroup.DefTitrations[0]
        possiblestates = titration.allstates
        state=possiblestates[0]
        atomnames = self.getAtomsForPotential(pKa,titration)

        self.apbs_setup.set_type('desolv')

        myRoutines = Routines(self.protein, self.routines.verbose)
        myRoutines.updateResidueTypes()
        myRoutines.updateSSbridges()
        myRoutines.updateBonds()
        myRoutines.updateInternalBonds()
        pKa.residue.fixed = 2

        myRoutines.debumpProtein()

        self.zeroAllRadiiCharges()
        self.setCharges(residue, atomnames)
        self.setAllRadii()
        self.getAPBSPotentials(pKa,titration,state)

        self.apbs_setup.maps = 1
        xdiel = 'xdiel_default.dx'
        ydiel = 'ydiel_default.dx'
        zdiel = 'zdiel_default.dx'
        kappa = 'kappa_default.dx'

        if self.sd:
            xdiel, ydiel, zdiel = smooth(xdiel,ydiel,zdiel)

        self.apbs_setup.xdiel = xdiel
        self.apbs_setup.ydiel = ydiel
        self.apbs_setup.zdiel = zdiel
        self.apbs_setup.kappa = kappa
        return


    #
    # -----------------------------------
    #


    def calculatePotentialDifferences(self):
        """
        # calculate potential difference of backbone atoms when each titratable group is set to charged and neutral states
        """
        potentialDifference={}
        for pKa in self.pKas:
            self.get_interaction_energies_setup(pKa,mode='pKD')
            all_potentials=self.all_potentials[pKa].copy()
            residue = pKa.residue
            pKaGroup = pKa.pKaGroup
            ambiguity = pKa.amb

            titgroup='%s:%s:%s' %(residue.chainID, string.zfill(residue.resSeq,4),pKaGroup.name)
            if titgroup not in potentialDifference:
                potentialDifference[titgroup]={}
                for atom in self.protein.getAtoms():
                    if atom.name in ['N','H','C']:
                        atom_uniqueid=atom.chainID+':'+string.zfill(atom.resSeq,4)+':'+atom.name
                        potentialDifference[titgroup][atom_uniqueid]=0.00

            #
            # Loop over each titration
            #
            for titration in pKaGroup.DefTitrations:
                startstates = titration.startstates
                endstates = titration.endstates
                possiblestates = titration.allstates
                #
                # Loop over each state
                #
                for state in possiblestates:
                    for atom in self.protein.getAtoms():
                        if atom.name in ['N','H','C']:
                            atom_uniqueid=atom.chainID+':'+string.zfill(atom.resSeq,4)+':'+atom.name
                            if state in startstates:
                                potentialDifference[titgroup][atom_uniqueid]-=all_potentials[titration][state][pKa][titration][state][atom_uniqueid]/len(startstates)
                            if state in endstates:
                                potentialDifference[titgroup][atom_uniqueid]+=all_potentials[titration][state][pKa][titration][state][atom_uniqueid]

        return potentialDifference
    #
    # -----------------------------------
    #

    def calculatePairwiseInteractions(self):
        """
        # Calculate the pairwise interaction energies
        """
        for pKa in self.pKas:
            self.get_interaction_energies_setup(pKa)
        return

    #
    # ------------------
    #

    def get_default_protonation_states(self, residues):
        """Get default protonation states for a list of residues"""
        defaultprotonationstates = {}
        for residue in residues:
            for atom in residue.atoms:
                self.routines.write(str(atom)+'\n')
            key = residue.name + '_' + residue.chainID + '_' + str(residue.resSeq)
            if residue.name in ["ASP", "GLU"]:
                defaultprotonationstates[key] = "0"
            elif residue.name in ["LYS", "TYR"]:
                defaultprotonationstates[key] = "1"
            elif residue.name == "ARG":
                defaultprotonationstates[key] = "1+2+3+4+5"
            elif residue.name == "HIS":
                if residue.hasAtom("HD1") and residue.hasAtom("HE2"):
                    defaultprotonationstates[key] = "1+2"
                elif residue.hasAtom("HD1"):
                    defaultprotonationstates[key] = "1"
                elif residue.hasAtom("HE2"):
                    defaultprotonationstates[key] = "2"
            if residue.isNterm:
                key = 'NTR' + '_' + residue.chainID + '_' + str(residue.resSeq)
                defaultprotonationstates[key] = "1+2"
            elif residue.isCterm:
                key = 'CTR' + '_' + residue.chainID + '_' + str(residue.resSeq)
                defaultprotonationstates[key] = "0"

        return defaultprotonationstates

    #
    # -----
    #

    def get_interaction_energies_setup(self,pKa,mode='pkacalc'):
        """Perform the setup for the interaction energy calculation"""
        residue = pKa.residue
        pKaGroup = pKa.pKaGroup
        ambiguity = pKa.amb

        #
        # Loop over each titration
        #
        self.all_potentials={}
        if pKa not in self.matrix:
            self.matrix[pKa]={}
            self.all_potentials[pKa]={}
        #
        for titration in pKaGroup.DefTitrations:
            if titration not in self.matrix[pKa]:
                self.matrix[pKa][titration]={}
                self.all_potentials[pKa][titration]={}
            #
            # Get the atomnames
            #
            atomnames = self.getAtomsForPotential(pKa,titration)
            atomlist=[]
            for atomname in atomnames:
                atomlist.append(residue.getAtom(atomname))
            center=self.get_atoms_center(atomlist)
            self.apbs_setup.setfineCenter(center)
            #
            # Get all states
            #
            possiblestates = titration.allstates
            for state in possiblestates:
                #
                # do not allow other states for this residue to be explored
                #
                for other_state in possiblestates:
                    residue.stateboolean[self.get_state_name(titration.name, other_state)] = False
                #
                # Here we switch the center group to a particular state
                #
                self.hydrogenRoutines.switchstate('pKa', ambiguity, self.get_state_name(titration.name,state))
                name='%s_%s_%s_%s' %(titration.name,
                                     pKa.residue.chainID,
                                     pKa.residue.resSeq,
                                     self.get_state_name(titration.name,state))


                intenename = os.path.join(self.state_files, name+'.interaction_energy.pickle')
                allpotsname = os.path.join(self.state_files, name+'.interaction_energy_allpots.pickle')
                residue.stateboolean[self.get_state_name(titration.name, state)] = True
                if not os.path.isfile(intenename):
                    pdb_file = os.path.join(self.pdb_dumps_dir, name+'_interaction_setup_input.pdb')


                    self.hbondOptimization()
                    self.dump_protein_file(pdb_file)
                    self.zeroAllRadiiCharges()
                    self.setAllRadii()
                    self.setCharges(residue, atomnames)
                #
                # get_interaction_energies get the potential at all titratable groups due the charges
                # this group
                #
                self.matrix[pKa][titration][state],self.all_potentials[pKa][titration][state]=self.get_interaction_energies(pKa,titration,state,mode, intenename, allpotsname)

        return

    #
    # ----
    #

    def get_interaction_energies(self,pKa_center,titration_center,state_center,mode,intene_file_name,allpots_file_name):
        """Get the potentials and charges at all titratable groups"""
        self.routines.write('------------>Charge - charge interactions for group: %s, state: %s\n' %
                            (pKa_center.residue.resSeq,self.get_state_name(titration_center.name, state_center)))

        read_allpots=None
        #
        if os.path.isfile(intene_file_name):
            with open(intene_file_name) as fd:
                savedict=pickle.load(fd)
            #
            # pKD?
            #
            if mode=='pKD' and os.path.isfile(allpots_file_name):
                try:
                    sys.stdout.flush()
                    with open(allpots_file_name) as fd:
                        allsavedict=pickle.load(fd)
                    read_allpots=1
                except EOFError:
                    self.routines.write('\n')
                    self.routines.write('File %s is corrupt.\nDeleting and continuing...\n' %allpots_file_name)
                    os.unlink(allpots_file_name)
                    allsavedict={}
            else:
                allsavedict={}
        else:
            self.routines.write('Not found '+intene_file_name+'\n')
            savedict={}
            allsavedict={}
        #
        # Run APBS and get the interaction with all other states
        #
        #if debug:
        #    CM.set_calc('IE %s %s' %(pKa_center.residue.resSeq,state_center))
        if savedict=={} or (allsavedict=={} and mode=='pKD'):
            self.apbs_setup.set_type('intene')
            potentials=self.getAPBSPotentials(pKa_center,titration_center,state_center,cleanup=False)

        #
        # construct this side
        #
        energies={}
        all_potentials={}
        #
        # Loop over all groups
        #
        calculated_energy=False
        for pKa in self.pKas:
            residue = pKa.residue
            pKaGroup = pKa.pKaGroup
            ambiguity = pKa.amb
            #
            # Loop over each titration
            #
            if pKa not in energies:
                energies[pKa]={}
                all_potentials[pKa]={}
            #
            for titration in pKaGroup.DefTitrations:
                if titration not in energies[pKa]:
                    energies[pKa][titration]={}
                    all_potentials[pKa][titration]={}
                #
                # Get all states
                #
                possiblestates = titration.allstates
                atomnames=self.getAtomsForPotential(pKa,titration)
                #
                # Calculate the interaction energy with a charged state. If that energy is not large, then
                # assume that all other energies for this titgroup are zero
                #
                start_state=[]
                for state1 in possiblestates:
                    if self.is_charged(pKa,titration,state1):
                        start_state=[state1]
                #
                # Loop over all states for this residue
                #

                for state in start_state+possiblestates:
                    all_potentials[pKa][titration][state]={}
                    name='%s_%s_%s_%s' %(titration.name,pKa.residue.chainID,pKa.residue.resSeq,self.get_state_name(titration.name,state))
                    #
                    # Check if we have values for this calculation already
                    #
                    if name in savedict:
                        energies[pKa][titration][state]= savedict[name]
                        if mode=='pKD':
                            if name in allsavedict:
                                all_potentials[pKa][titration][state]=allsavedict[name]
                        continue
                    #
                    # Calculate the energy
                    #
                    calculated_energy=True
                    #
                    # Allow optimization of states for all other groups
                    #
                    for other_pKa in self.pKas:
                        if pKa==other_pKa:
                            continue
                        for other_titration in other_pKa.pKaGroup.DefTitrations:
                            #
                            # Don't change stateboolean for the center group
                            #
                            if other_titration==titration_center:
                                continue
                            #
                            # Allow all states for all other residues (this matters only for the bump score calculation)
                            #
                            other_possiblestates = other_titration.allstates
                            for other_state in other_possiblestates:
                                other_pKa.residue.stateboolean[self.get_state_name(other_titration.name, other_state)] = True
                    #
                    # Switch to the particular state we want to measure for
                    #
                    self.hydrogenRoutines.switchstate('pKa', ambiguity, self.get_state_name(titration.name,state))
                    self.routines.write(str(titration)+'\n')
                    self.routines.write(titration.name+'\n')
                    for other2_state in titration.allstates:
                        pKa.residue.stateboolean[self.get_state_name(titration.name,other2_state)]=False
                    pKa.residue.stateboolean[self.get_state_name(titration.name,other2_state)]=True
                    #
                    # We have to do a full Hbond optimization here to get the correct bumpscore
                    #
                    bump=False
                    pdb_file = os.path.join(self.pdb_dumps_dir, name+'_interaction_input.pdb')


                    self.hbondOptimization() # Optimize the hydrogens to actually put the hydrogen in the right position
                    self.dump_protein_file(pdb_file)

                    if self.routines.getbumpscore(pKa_center.residue)>100:
                        bump=True
                    elif self.routines.getbumpscore(pKa.residue)>100:
                        bump=True
                    #
                    #
                    #
                    potentials=self.getmoreAPBSPotentials()
                    self.zeroAllRadiiCharges()
                    self.setAllRadii()
                    self.setCharges(residue, atomnames)
                    #
                    # Get atoms for potential
                    #
                    atomlist=[]
                    for atomname in atomnames:
                        if residue.getAtom(atomname) not in atomlist:
                            atomlist.append(residue.getAtom(atomname))

                    energy=0.0
                    count=0
                    for atom in self.protein.getAtoms():
                        for atom2 in atomlist:
                            if is_sameatom(atom,atom2):
                                energy=energy+potentials[count]*atom.get("ffcharge")
                        count=count+1

                    #
                    # We set all energies with self to zero
                    #
                    if pKa==pKa_center:
                        energies[pKa][titration][state]=0.0
                    else:
                        if bump:
                            energies[pKa][titration][state]=100000.0 # exclude this combination
                        else:
                            energies[pKa][titration][state]=energy
                    #
                    # Check if this is the charged state
                    #
                    if state==start_state[0]:
                        self.routines.write('\nENERGY; %f\n\n' %energy)
                        #raw_input('continue?')
                        if abs(energy)<self.pairene and mode!='pKD':
                            #
                            # If energy is below cutoff then do not explore other states
                            #
                            for stateset in possiblestates:
                                if stateset==start_state[0]:
                                    continue
                                energies[pKa][titration][stateset]=0.0
                                name2='%s_%s_%s_%s' %(titration.name,pKa.residue.chainID,pKa.residue.resSeq,self.get_state_name(titration.name,stateset))
                                savedict[name2]=energies[pKa][titration][stateset]
                                self.routines.write('\n\n=======SKIPPING NEUTRAL STATES==============\n\n\n')
                    #
                    # Save in dict
                    #
                    savedict[name]=energies[pKa][titration][state]
                    #
                    # If running in pKD mode then we also return all potentials
                    #
                    if mode=='pKD':
                        count=0
                        for atom in self.protein.getAtoms():
                            atom_uniqueid=atom.chainID+':'+string.zfill(atom.resSeq,4)+':'+atom.name
                            all_potentials[pKa][titration][state][atom_uniqueid]=potentials[count]
                            count=count+1
                        allsavedict[name]=all_potentials[pKa][titration][state]
        #
        # Get rid of APBS instance
        #
        if self.APBS is not None:
            self.APBS.cleanup()
            self.APBS=None
        #
        # Dump a pickle file
        #
        if calculated_energy:
            with open(intene_file_name,'w') as fd:
                pickle.dump(savedict,fd)
            if mode=='pKD' and not read_allpots:
                with open(allpots_file_name,'w') as fd:
                    pickle.dump(allsavedict,fd)
        return energies,all_potentials

    #
    # ----------------------------------
    #

    def calculatepKaValue(self):
        """
        Calculate the pKa Value

        We use a graph cut method because it gives the right answer.
        """
        #
        # First we need to correct all the interaction energies to make sure that terms aren't
        # counted twice
        #
        correct_matrix=self.correct_matrix()
        
        #
        #check that the energies in the interaction matrix are no larger than 80kT; if so, terminate the program.
        #
        for pKa in self.pKas:
            for titration in pKa.pKaGroup.DefTitrations:
                for pKa2 in self.pKas:
                    for titration2 in pKa2.pKaGroup.DefTitrations:
                        pos_states = titration.allstates
                        pos_states.sort()
                        for state1 in pos_states:
                            states2 = titration2.allstates
                            states2.sort()
                            for state2 in states2:
                                linen = correct_matrix[pKa][titration][state1][pKa2][titration2][state2]
                                if abs(linen) > 80:
                                    exitString = "\nError!!: Detected abnormally large interaction energy %5.4f kT before calculating pKas\n" % linen
                                    exitString = exitString + "Terminating Program.\n"
                                    sys.exit(exitString)
                            

        protein_complex = create_protein_complex_from_matrix(correct_matrix)
        for pKa in self.pKas:
            process_desolv_and_background(protein_complex, pKa)

        protein_complex.simplify()

        curves = get_titration_curves(protein_complex)

        create_output(self.titcurves_dir, curves)

        pka_values, pH_values = self.find_pka_and_pH(curves)
        print(pka_values)
        print(pH_values)
        self.ph_at_0_5 = pH_values

        ln10=math.log(10)


        self.routines.write('\n\nFinal pKa values\n\n')
        pkas={}
        for pKa in self.pKas:
            pKaGroup = pKa.pKaGroup
            Gtype=pKa.pKaGroup.type
            for titration in pKaGroup.DefTitrations:
                name=pKa.uniqueid
                pKa_value = pka_values[pKaGroup.name, pKa.residue.chainID, str(pKa.residue.resSeq)]
                pkas[name]={'pKa':pKa_value}
                self.routines.write("name: %s, PKAS[name]: %s\n" % (name, pkas[name]))
                pkas[name]['modelpK']=titration.modelpKa
                #
                # Find an uncharged reference state
                #
                ref_state=self.neutral_ref_state[pKa][titration]
                #
                all_states=titration.allstates
                all_states.sort()
                for state in all_states:
                    if self.is_charged(pKa,titration,state)==1:
                        dpKa_desolv=(pKa.desolvation[self.get_state_name(titration.name,state)]-pKa.desolvation[self.get_state_name(titration.name,ref_state)])/ln10
                        dpKa_backgr=(pKa.background[self.get_state_name(titration.name,state)]-pKa.background[self.get_state_name(titration.name,ref_state)])/ln10
                        #
                        # Make acid and base modifications
                        #
                        if Gtype=='base':
                            dpKa_desolv=-dpKa_desolv
                            dpKa_backgr=-dpKa_backgr

                pkas[name]['desolv']=dpKa_desolv
                pkas[name]['backgr']=dpKa_backgr

                self.routines.write('Desolvation '+ str(pKa.desolvation) +'\n')
                self.routines.write('Background '+ str(pKa.background) +'\n')

                possiblestates = titration.allstates
                #
                # Record the number of states for each titratable group
                #
                #state_counter.append(len(possiblestates))

                pos_states=possiblestates
                chg_intpkas=[]
                neut_intpkas=[]
                pos_statenames=[]
                pos_states.sort()
                for state in pos_states:
                    pos_statenames.append(self.get_state_name(titration.name,state))
                self.routines.write('States'+ str(pos_statenames) +'\n')
                for state in pos_states:
                    crg=self.is_charged(pKa,titration,state)
                    if abs(crg)>0.1:
                        chg_intpkas.append(pKa.intrinsic_pKa[state])
                    else:
                        neut_intpkas.append(pKa.intrinsic_pKa[state])
                    self.routines.write('State: %6s, charge: %5.2f, intpka: %5.3f\n' %(self.get_state_name(titration.name,state),crg,pKa.intrinsic_pKa[state]))

                pkas[name]['intpka']=pKa.simulated_intrinsic_pKa
                pkas[name]['delec']=pKa_value-pkas[name]['intpka']
                #
                # Print
                #
                pKa.pKa=pKa_value
                self.routines.write('Simulated intrinsic pKa: %5.3f, delec: %5.3f\n' %(pkas[name]['intpka'],pkas[name]['delec']))
                self.routines.write('%s final pKa: %5.2f\n' %(pKa.uniqueid,pKa.pKa))
                self.routines.write('=============================================\n\n')

        # Write a WHAT IF -style pKa file

        X=pKaIO_compat.pKaIO()

        X.write_pka(self.output_files['pka_dat_file_path'],pkas,format='pdb2pka')
        #
        # Desolv file % Backgr file
        #
        X.desolv={}
        X.backgr={}
        for name in list(pkas.keys()):
            X.desolv[name]=pkas[name]['desolv']
            X.backgr[name]=pkas[name]['backgr']


        X.write_desolv(self.output_files['desolv_dat_file_path'],format='pdb2pka')
        X.write_backgr(self.output_files['backgr_dat_file_path'],format='pdb2pka')

        #
        # Write the charge matrix
        #
        X.write_pdb2pka_matrix(self.output_files['matrix_dat_file_path'], correct_matrix)
        return

    #
    # ----
    #


    def find_pka_and_pH(self, curves):
        """
        Detect and report non Henderson-Hasselbalch behavior in titration curves.
        Find the pKa value for each curve.
        Also find ph when 0.5 (-0.5 for acid) is crossed on the curve.
        """
        pKa_results = {}
        pH_results = {}

        adjacent_data_points = 5

        for name, curve in curves.items():
            bad_curve = False
            curve_calc_point = 0.5

            pKa_value = -999.0

            #List of booleans of which side of curve_calc_point charges fell on.
            charge_side = [x[1] > curve_calc_point for x in curve]

            #Check to see if we never cross 0.5 or -0.5 at all
            if all(charge_side) or not any(charge_side):
                warning = "WARNING: UNABLE TO CACLCULATE PKA FOR {name}\n".format(name=name)
                print(warning, end=' ')
                self.warnings.append(warning)
                pKa_results[name] = pKa_value
                continue


            #Find all unique adjacent pairs of False and True
            side_pairs = set(zip(charge_side[:-1], charge_side[1:]))

            if (True,False) not in side_pairs:
                warning =  "WARNING: {name} DOES NOT EXHIBIT Henderson-Hasselbalch BEHAVIOR\n".format(name=name)
                print(warning, end=' ')
                self.warnings.append(warning)

                warning = "WARNING: {name} TITRATION CURVE IS BACKWARDS\n".format(name=name, calc=curve_calc_point)
                print(warning, end=' ')
                self.warnings.append(warning)
                cross_index = charge_side.index(True)
                bad_curve = True
            else:
                cross_index = charge_side.index(False)

            #We should always see (True, False) in perfect Henderson-Hasselbalch behavior
            #(False, True) means we've crossed back over the line and therefore our PKA value is in question.
            if (True,False) in side_pairs and (False,True) in side_pairs:
                warning =  "WARNING: {name} DOES NOT EXHIBIT Henderson-Hasselbalch BEHAVIOR\n".format(name=name)
                print(warning, end=' ')
                self.warnings.append(warning)
                warning = "WARNING: {name} TITRATION CURVE CROSSES {calc} AT LEAST TWICE\n".format(name=name, calc=curve_calc_point)
                print(warning, end=' ')
                self.warnings.append(warning)

                bad_curve = True

            prevous_cross_index = cross_index - 1

            #linear interpolation
            charge0, ph0 =  curve[prevous_cross_index]
            charge1, ph1 =  curve[cross_index]

            try:
                ph_at_0_5 = ph0 + ((ph1-ph0) * ((curve_calc_point-charge0)/(charge1-charge0)))
                pH_results[name] = ph_at_0_5
            except ZeroDivisionError:
                warning = "WARNING: UNABLE TO CACLCULATE pH FOR {name}, Divide by zero.\n".format(name=name)
                print(warning, end=' ')
                self.warnings.append(warning)

            if not bad_curve:
                print("{name} exhibits Henderson-Hasselbalch behavior.".format(name=name))

            #Calc pKa value
            start = max(0, prevous_cross_index-adjacent_data_points)
            end = cross_index + adjacent_data_points
            pka_pairs = curve[start:end]

            try:
                pkas = [pH-math.log10(abs(v)/(1.0-abs(v))) for pH, v in pka_pairs]
                pKa_value = sum(pkas)/float(len(pkas))
            except ZeroDivisionError:
                warning = "WARNING: UNABLE TO CACLCULATE PKA FOR {name}, Divide by zero.\n".format(name=name)
                print(warning, end=' ')
                self.warnings.append(warning)


            pKa_results[name] = pKa_value



        return pKa_results, pH_results

    def correct_matrix(self):
        """Correct the matrix so that all energies are correct, i.e.
        that we subtract the neutral-charged and charged-neutral interaction energies
        in the right places.
        After having fixed this we make the matrix symmetric"""
        corrected_matrix={}
        #
        # Loop over the original matrix
        #
        for pKa1 in self.pKas:
            corrected_matrix[pKa1]={}
            pKaGroup = pKa1.pKaGroup
            for titration1 in pKaGroup.DefTitrations:
                corrected_matrix[pKa1][titration1]={}
                #
                # Get the reference state for first state
                #
                ref_state1=self.neutral_ref_state[pKa1][titration1]

                possible_states = titration1.allstates
                possible_states.sort()
                for state1 in possible_states:
                    corrected_matrix[pKa1][titration1][state1]={}
                    for pKa2 in self.pKas:
                        corrected_matrix[pKa1][titration1][state1][pKa2]={}
                        pKaGroup2 = pKa2.pKaGroup
                        for titration2 in pKaGroup2.DefTitrations:
                            corrected_matrix[pKa1][titration1][state1][pKa2][titration2]={}
                            #
                            # Get the reference state for the second state
                            #
                            ref_state2=self.neutral_ref_state[pKa2][titration2]
                            states2=titration2.allstates
                            states2.sort()
                            for state2 in states2:
                                #
                                # Now figure out what the correct energy for the interaction is
                                #
                                if state1==ref_state1 and state2==ref_state2:
                                    # No interaction for ref-ref
                                    value=0.0
                                else:
                                    value=self.matrix[pKa1][titration1][state1][pKa2][titration2][state2]
                                    #
                                    # Subtract Eint(state1,ref2)+Eint(state2,ref1) and add Eint(ref1,ref2)
                                    #
                                    state1_ref2=self.matrix[pKa1][titration1][state1][pKa2][titration2][ref_state2]
                                    state2_ref1=self.matrix[pKa1][titration1][ref_state1][pKa2][titration2][state2]
                                    ref1_ref2=self.matrix[pKa1][titration1][ref_state1][pKa2][titration2][ref_state2]
                                    #
                                    # If this is a bump state, then disallow it.
                                    # If we have a bump for a reference state, then the code below will
                                    # give a slightly wrong value.... This should be fixed.
                                    #
                                    if abs(value)>1000.0:
                                        value=100000.0
                                    elif abs(state1_ref2)>1000.0 or abs(state2_ref1)>1000.0 or abs(ref1_ref2)>1000.0:
                                        value=value
                                    else:
                                        value=value-state1_ref2-state2_ref1+ref1_ref2
                                #
                                # Insert this value in the corrected matrix
                                #
                                self.routines.write( ' '.join((str(pKa1.uniqueid),
                                                               titration1.name,
                                                               state1,
                                                               str(pKa2.uniqueid),
                                                               titration2.name,
                                                               state2,
                                                               str(value)))+'\n')
                                corrected_matrix[pKa1][titration1][state1][pKa2][titration2][state2]=value
        #
        # Make matrix symmetric
        #
        with open(self.output_files['interaction_matrix_dat_file_path'], 'w') as outfile:
            outfile.write('Interaction energy matrix\n')
            outfile.write('%25s %25s %10s %10s %16s\n' %('Group1','Group 2','State G1','State G2','Interaction energy (kT)'))
            symmetric_matrix={}
            for pKa1 in self.pKas:
                symmetric_matrix[pKa1]={}
                pKaGroup = pKa1.pKaGroup
                for titration1 in pKaGroup.DefTitrations:
                    symmetric_matrix[pKa1][titration1]={}
                    possible_states = titration1.allstates
                    possible_states.sort()
                    for state1 in possible_states:
                        symmetric_matrix[pKa1][titration1][state1]={}
                        for pKa2 in self.pKas:
                            symmetric_matrix[pKa1][titration1][state1][pKa2]={}
                            pKaGroup2 = pKa2.pKaGroup
                            for titration2 in pKaGroup2.DefTitrations:
                                symmetric_matrix[pKa1][titration1][state1][pKa2][titration2]={}
                                #
                                # Get the reference state for the second state
                                #
                                states2=titration2.allstates
                                states2.sort()
                                for state2 in states2:
                                    #
                                    # Now figure out what the correct energy for the interaction is
                                    #
                                    value1=corrected_matrix[pKa1][titration1][state1][pKa2][titration2][state2]
                                    value2=corrected_matrix[pKa2][titration2][state2][pKa1][titration1][state1]
                                    #
                                    # Insert the average value in the symetric matrix
                                    #
                                    average = (value1+value2)/2.0
                                    outfile.write('%25s %25s %10s %10s %6.3f %6.3f %6.3f\n' %(pKa1.uniqueid,pKa2.uniqueid,state1,state2,value1,value2,average))

                                    symmetric_matrix[pKa1][titration1][state1][pKa2][titration2][state2]=average
        return symmetric_matrix

    #
    # ----------------------------------
    #

    def is_charged(self,pKa,titration,state):
        """
        # Check if this state is a charged state
        """
        #
        # Check if there are any other titratable groups in this residue
        #
        for other_pKa in self.pKas:
            if pKa==other_pKa:
                continue
            for other_titration in other_pKa.pKaGroup.DefTitrations:
                self.hydrogenRoutines.switchstate('pKa',other_pKa.amb,self.get_state_name(other_titration.name,self.neutral_ref_state[other_pKa][other_titration]))
        #
        # Get charge
        #
        ambiguity = pKa.amb
        self.hydrogenRoutines.switchstate('pKa', ambiguity, self.get_state_name(titration.name,state))
        residue = pKa.residue
        pKaGroup = pKa.pKaGroup
        sum=0.0
        for atom in residue.getAtoms():
            atomname = atom.get("name")
            if atomname.find('FLIP')!=-1:
                continue
            charge, radius = self.forcefield.getParams1(residue, atomname)
            sum=sum+charge

        return abs(sum)>0.05

    #
    # ----------------------------------
    #

    def calculateIntrinsicpKa(self):
        """
        #  Calculate the intrinsic pKa values for all titratable groups
        """
        self.calculateDesolvation()
        self.calculateBackground()
        #
        # Calculate the intrinsic pKas
        #
        # Print what we got
        #
        for pKa in self.pKas:
            self.routines.write("======== Residue: %s ========\n" % (pKa.residue))
            self.routines.write('     State\tModel pKa\tDesolvation\tBackground\n')
            for titration in pKa.pKaGroup.DefTitrations:
                for state in titration.allstates:
                    self.routines.write( state+'\n')
                    self.routines.write( self.get_state_name(titration.name,state)+'\n')
                    self.routines.write( str(pKa.desolvation[self.get_state_name(titration.name,state)])+'\n')
                    self.routines.write( str(pKa.background[self.get_state_name(titration.name,state)])+'\n')
                    self.routines.write('%10s\t%5.3f\t\t%5.3f\t\t%5.3f\n' %(self.get_state_name(titration.name,state),
                                                            titration.modelpKa,
                                                            pKa.desolvation[self.get_state_name(titration.name,state)],
                                                            pKa.background[self.get_state_name(titration.name,state)]))
        self.routines.write('\n\n')
        #
        # We calculate an intrinsic pKa for every possible <startstate> -> <endstate> transition
        #
        ln10=math.log(10)
        for pKa in self.pKas:
            pKaGroup=pKa.pKaGroup
            Gtype=pKa.pKaGroup.type
            #
            # We measure intrinsic pKa values against a single reference state
            #
            for titration in pKaGroup.DefTitrations:
                #
                # Find the uncharged reference state
                #
                ref_state=self.neutral_ref_state[pKa][titration]
                #
                #
                #
                all_states=titration.allstates
                all_states.sort()
                for state in all_states:
                    if self.is_charged(pKa,titration,state)==1:
                        dpKa_desolv=(pKa.desolvation[self.get_state_name(titration.name,state)]-
                                     pKa.desolvation[self.get_state_name(titration.name,ref_state)])/ln10
                        dpKa_backgr=(pKa.background[self.get_state_name(titration.name,state)]-
                                     pKa.background[self.get_state_name(titration.name,ref_state)])/ln10
                        #
                        # Make acid and base modifications
                        #
                        if Gtype=='base':
                            dpKa_desolv=-dpKa_desolv
                            dpKa_backgr=-dpKa_backgr
                        #
                        # Now calculate intrinsic pKa
                        #
                        intpKa=titration.modelpKa+dpKa_desolv+dpKa_backgr
                        self.routines.write('Energy difference for %6s   -> %6s [reference state] is %5.2f pKa units\n' %(self.get_state_name(titration.name,state),
                                                                                                          self.get_state_name(titration.name,ref_state),
                                                                                                          intpKa))
                        pKa.intrinsic_pKa[state]=intpKa
                    else:
                        #
                        # Neutral states
                        #
                        dpKa_desolv=(pKa.desolvation[self.get_state_name(titration.name,state)]-
                                     pKa.desolvation[self.get_state_name(titration.name,ref_state)])/ln10
                        dpKa_backgr=(pKa.background[self.get_state_name(titration.name,state)]-
                                     pKa.background[self.get_state_name(titration.name,ref_state)])/ln10
                        #
                        # Make acid and base modifications
                        #
                        if Gtype=='base':
                            dpKa_desolv=-dpKa_desolv
                            dpKa_backgr=-dpKa_backgr
                        dpKa=dpKa_desolv+dpKa_backgr
                        self.routines.write('Energy difference for %6s   -> %6s [reference state] is %5.2f pKa units\n' %(self.get_state_name(titration.name,state),
                                                                                                          self.get_state_name(titration.name,ref_state),
                                                                                                          dpKa))
                        pKa.intrinsic_pKa[state]=dpKa
            # -----------------------------------------------------------------
            # Get the intrinsic pKa with a small MC calculation
            #
#             acidbase=[]
#             is_charged=[]
#             intpKas=[]
#             for titration in pKaGroup.DefTitrations:
#                 #
#                 # Acid/Base
#                 #
#                 if pKaGroup.type=='acid':
#                     acidbase.append(-1)
#                 else:
#                     acidbase.append(1)
#                 #
#                 #
#                 #
#                 possiblestates = titration.allstates
#                 #
#                 # Record the number of states for each titratable group
#                 #
#                 pos_states=possiblestates
#                 pos_states.sort()
#                 for state in pos_states:
#                     #
#                     # Is this a charged state?
#                     #
#                     crg=self.is_charged(pKa,titration,state)
#                     is_charged.append(crg)
#                     intpKas.append(pKa.intrinsic_pKa[state])
#             intpka=titrate_one_group(name='%s' %(pKa.residue),intpkas=intpKas,is_charged=is_charged,acidbase=acidbase)
            curve = curve_for_one_group(pKa)
            pka_values, _ = self.find_pka_and_pH(curve)
            intpka = list(pka_values.values())[0]
            pKa.simulated_intrinsic_pKa=intpka
        return

    #
    # --------------------------------
    #

    def hbondOptimization(self):
        """
        #
        #   Routines needed for H-bond optimization
        #
        """
        # Setting up
        myRoutines = Routines(self.protein, self.routines.verbose)
        myRoutines.updateResidueTypes()

        myRoutines.updateBonds()
        #myRoutines.updateInternalBonds()
        myRoutines.updateSSbridges()

        myRoutines.debumpProtein()

        # Initialize H-bond optimization
        self.hydrogenRoutines.setOptimizeableHydrogens()
        self.hydrogenRoutines.initializeFullOptimization()

        # Full optimization
        self.hydrogenRoutines.optimizeHydrogens()

        # Clean up, debump
        self.hydrogenRoutines.cleanup()
        myRoutines.setStates() # this identifies the protonation states to pdb2pqr
        #myRoutines.debumpProtein() # why do we debump after setting the states?

        return

    #
    # --------------------
    #

    def calculateBackground(self,onlypKa=None):
        """
        #    Calculate background interaction energies
        """

        backgroundname = os.path.join(self.state_files,'background_interaction_energies.pickle')
        if os.path.isfile(backgroundname):
            with open(backgroundname) as fd:
                savedict=pickle.load(fd)
        else:
            savedict={}

        for pKa in self.pKas:
            if onlypKa:
                if not pKa==onlypKa:
                    continue
            residue = pKa.residue
            pKaGroup = pKa.pKaGroup
            ambiguity = pKa.amb

            self.routines.write("-----> Finding Background Interaction Energy for %s %s\n" %(residue.name, residue.resSeq))
            #
            # Loop over all titrations in this group
            #
            for titration in pKaGroup.DefTitrations:
                #
                # Get all the states for this titration
                #
                possiblestates = titration.startstates + titration.endstates
                #
                # Loop over all states and calculate the Background Interaction energy for each
                #
                for state in possiblestates:
                    #
                    # Set the name for this energy
                    #
                    name='%s_%s_%s_%s' %(titration.name,pKa.residue.chainID,pKa.residue.resSeq,self.get_state_name(titration.name,state))
                    if name in savedict:
                        pKa.background[self.get_state_name(titration.name,state)] = savedict[name]
                        continue
                    #
                    # Do not allow any other states to be explored
                    #
                    for state2 in possiblestates:
                        residue.stateboolean[self.get_state_name(titration.name,state2)]=False
                    #
                    # This is the state we are calculating for
                    #
                    residue.stateboolean[self.get_state_name(titration.name, state)] = True
                    #
                    # Get the atoms where we will measure the potential
                    #
                    firststate = possiblestates[0]
                    atomnames = self.getAtomsForPotential(pKa,titration)
                    atomlist=[]
                    for atomname in atomnames:
                        atomlist.append(residue.getAtom(atomname))
                    #
                    # Switch the states of all other titratable groups to the neutral reference state
                    #
                    for other_pKa in self.pKas:
                        if pKa==other_pKa:
                            continue
                        for other_titration in other_pKa.pKaGroup.DefTitrations:
                            #
                            # For each residue we first set all states to False in stateboolean
                            # This means that they cannot be explored during a pKa calculation
                            # Afterwards we set stateboolean to True for the neutral ref state
                            #
                            other_possiblestates = other_titration.allstates
                            for other_state in other_possiblestates:
                                if not self.is_charged(other_pKa,other_titration,other_state):
                                    other_pKa.residue.stateboolean[self.get_state_name(other_titration.name, other_state)] = True
                                else:
                                    other_pKa.residue.stateboolean[self.get_state_name(other_titration.name, other_state)] = False
                            #
                            #self.hydrogenRoutines.switchstate('pKa',other_pKa.amb,
                            #                                  self.get_state_name(other_titration.name,
                            #                                                      self.neutral_ref_state[other_pKa][other_titration]))
                            other_pKa.residue.stateboolean[self.neutral_ref_state[other_pKa][other_titration]]=True
                    #
                    # Switch the state for the group in question
                    #
                    self.routines.write("----------> Calculating Background for state %s\n" % (self.get_state_name(titration.name,state)))
                    self.hydrogenRoutines.switchstate('pKa', ambiguity, self.get_state_name(titration.name,state))

                    # Not allowing current protonation state to be explored during H-bond optimization
                    #residue.stateboolean[self.get_state_name(titration.name, state)] = False

                    pdb_file_name = os.path.join(self.pdb_dumps_dir, name+'_background_input.pdb')
                    self.dump_protein_file(pdb_file_name)

                    self.hbondOptimization()

                    # residue.stateboolean returns to default value (True)
                    #residue.stateboolean[self.get_state_name(titration.name, state)] = True

                    self.zeroAllRadiiCharges()
                    self.setAllRadii()

                    pqr_file_name = os.path.join(self.pdb_dumps_dir, name+'_background_input.pqr')
                    self.dump_protein_file(pqr_file_name, pdbfile=False)

                    #
                    # Set charges on all other residues
                    #
                    for chain in self.protein.getChains():
                        for otherresidue in chain.get("residues"):
                            if residue == otherresidue:
                                continue
                            otherlist = []
                            for atom in otherresidue.atoms:
                                if not atom:
                                    continue
                                if atom.get('name').find('FLIP')==-1:
                                    otherlist.append(atom.get("name"))
                            self.setCharges(otherresidue, otherlist)

                    #
                    # Center the map on our residue
                    #
                    center=self.get_atoms_center(atomlist)

                    all_center,extent=self.apbs_setup.getCenter()

                    #
                    # For small proteins we set the center to the center of the molecule
                    #
                    #if extent[0]<20.0 or extent[1]<20.0 or extent[2]<20.0:
                    #    self.apbs_setup.setfineCenter(all_center)
                    #else:
                    self.apbs_setup.setfineCenter(center)
                    self.apbs_setup.set_type('background')
                    #
                    # Run APBS
                    #
                    if debug:
                        CM.set_calc('background %s %s' %(pKa.residue.resSeq,state))
                    potentials=self.getAPBSPotentials(pKa,titration,state)
                    #
                    # Assign charges to our residue
                    #
                    self.setCharges(residue, atomnames)
                    #
                    # Return the potentials - same order as in atomnames
                    #
                    energy=self.get_elec_energy(potentials,atomlist)
                    #
                    # We use the bumpscore to effectively exclude a state
                    #
                    if self.routines.getbumpscore(pKa.residue) > 100:
                        energy=100000.0 # State will never be visited
                        self.routines.write('Excluded state\n')
                        self.routines.write(str(pKa.residue)+' '+str(titration)+' '+str(state)+'\n')
                        self.routines.write(self.get_state_name(titration.name,state)+'\n')

                    #energy=energy+self.routines.getbumpscore()
                    #
                    # Add corrections for Asp and Glu trans states.
                    # His tautomers etc.
                    #
                    self.routines.write(self.get_state_name(titration.name,state)+'\n')
                    if self.get_state_name(titration.name,state) in ['ASH1t','ASH2t','GLH1t','GLH2t']:
                        energy=energy+math.log(10)*1.99
                        self.routines.write('Modified energy of trans state\n')
                        self.routines.write(titration.name+'\n')
                        self.routines.write(str(pKa.residue)+'\n')
                        self.routines.write(self.get_state_name(titration.name,state)+'\n')
                    elif self.get_state_name(titration.name,state) in ['JUNKHIS']:
                        energy=energy+0.0
                    #
                    # Done with Background calc for this state
                    #
                    pKa.background[self.get_state_name(titration.name,state)] = energy
                    #
                    # Save it under a unique name
                    #
                    self.routines.write('Saving energy as'+name+'\n')
                    savedict[name]=energy
                    #
                    # Dump the pickle file
                    #
                    with open(backgroundname,'w') as fd:
                        pickle.dump(savedict,fd)

        with open(self.output_files['background_interaction_energies_file_path'] , 'w') as f:
            keys = list(savedict.keys())
            keys.sort()
            for key in keys:
                value = savedict[key]
                residue, tit_state = key.rsplit('_', 1)

                f.write(' '.join((residue, tit_state, str(value)))+'\n')
        return

    #
    # --------------------------------
    #

    def calculateDesolvation(self,onlypKa=None):
        """
        #
        #   Calculate the Desolvation Energies
        #
        """

        desolvname=os.path.join(self.state_files, 'desolvation_energies.pickle')
        if os.path.isfile(desolvname):
            with open(desolvname) as fd:
                savedict=pickle.load(fd)
        else:
            savedict={}
        #
        # ----
        #
        for pKa in self.pKas:
            if onlypKa:
                if not pKa==onlypKa:
                    continue
            residue = pKa.residue
            pKaGroup = pKa.pKaGroup
            ambiguity = pKa.amb

            self.routines.write("-----> Calculating Desolvation Energy for %s %s\n" %(residue.name, residue.resSeq))
            for titration in pKaGroup.DefTitrations:
                #
                # Get all possible states for this group
                #
                possiblestates = titration.allstates
                #
                # Get atoms for potential
                #
                atomnames = self.getAtomsForPotential(pKa,titration)
                atomlist=[]
                for atomname in atomnames:
                    atomlist.append(residue.getAtom(atomname))
                #
                # Switch all the other groups to the neutral reference state
                #
                for other_pKa in self.pKas:
                    if pKa==other_pKa:
                        continue
                    for other_titration in other_pKa.pKaGroup.DefTitrations:
                        #
                        # For each residue we first set all states to False in stateboolean
                        # This means that they cannot be explored during a pKa calculation
                        # Afterwards we set stateboolean to True for the neutral ref state
                        #
                        other_possiblestates = other_titration.allstates
                        for other_state in other_possiblestates:
                            other_pKa.residue.stateboolean[self.get_state_name(other_titration.name, other_state)] = False
                        self.hydrogenRoutines.switchstate('pKa',other_pKa.amb,
                                                          self.get_state_name(other_titration.name,
                                                                              self.neutral_ref_state[other_pKa][other_titration]))
                        other_pKa.residue.stateboolean[self.neutral_ref_state[other_pKa][other_titration]]=True
                #
                # Calculate the self energy for each state
                #
                for state in possiblestates:
                    # Adding a stateboolean structure (dictionary) here,
                    # default values are True, meaning the current protonation state
                    # is allowed to be explored during H-bond optimization. False means not allowed.
                    for state2 in possiblestates:
                        residue.stateboolean[self.get_state_name(titration.name,state2)]=False
                    #
                    # This is the state we are calculating for
                    #
                    residue.stateboolean[self.get_state_name(titration.name, state)] = True
                    name='%s_%s_%s_%s' %(titration.name,pKa.residue.chainID,pKa.residue.resSeq,self.get_state_name(titration.name,state))
                    #
                    if name in savedict:
                        pKa.desolvation[self.get_state_name(titration.name,state)] = savedict[name]
                        continue
                    self.routines.write("---------> Calculating desolvation energy for residue %s state %s in solvent\n" %(residue.name,self.get_state_name(titration.name,state)))
                    #
                    # Center the map on our set of atoms
                    #
                    center=self.get_atoms_center(atomlist)
                    self.apbs_setup.setfineCenter(center)
                    self.apbs_setup.set_type('desolv')
                    #
                    # Switch to the state
                    # Assign, radii, charges

                    self.hydrogenRoutines.switchstate('pKa', ambiguity, self.get_state_name(titration.name,state))

                    # Not allowing current protonation state to be explored during H-bond optimization
                    #residue.stateboolean[self.get_state_name(titration.name, state)] = False

                    pdb_file_name = os.path.join(self.pdb_dumps_dir, name+'_desolve_input.pdb')


                    self.hbondOptimization()
                    self.dump_protein_file(pdb_file_name)

                    # residue.stateboolean returns to default value (True)
                    #residue.stateboolean[self.get_state_name(titration.name, state)] = True

                    self.zeroAllRadiiCharges()
                    self.setCharges(residue, atomnames)
                    self.setRadii(residue, atomnames)

                    #
                    # Run APBS first time for the state in solvent
                    #
                    if debug:
                        CM.set_calc('Desolv solv %s %s' %(pKa.residue.resSeq,state))

                    solutionEnergy=self.get_elec_energy(self.getAPBSPotentials(pKa,titration,state),atomlist)
                    #
                    # Now we set all radii (= in protein)
                    #
                    self.setAllRadii()
                    #
                    # Run APBS again, - this time for the state in the protein
                    #
                    self.routines.write('--------> Calculating self energy for residue %s %d state %s in the protein\n' %(residue.name,residue.resSeq,self.get_state_name(titration.name,state)))

                    if debug:
                        CM.set_calc('Desolv prot %s %s' %(pKa.residue.resSeq,state))
                    #
                    proteinEnergy = self.get_elec_energy(self.getAPBSPotentials(pKa,titration,state),atomlist)
                    #
                    # Calculate the difference in self energy for this state
                    #
                    desolvation = (proteinEnergy - solutionEnergy)/2.0 # Reaction field energy
                    self.routines.write('Desolvation for %s %d in state %s is %5.3f\n\n'
                          %(residue.name,residue.resSeq,self.get_state_name(titration.name,state),desolvation))
                    self.routines.write( '=======================================\n')
                    pKa.desolvation[self.get_state_name(titration.name,state)] = desolvation
                    self.routines.write('Saving energy as '+name+'\n')
                    savedict[name]=desolvation

                    #
                    # Dump a pickle file
                    #
                    with open(desolvname,'w') as fd:
                        pickle.dump(savedict,fd)

        with open(self.output_files['desolvation_energies_file_path'], 'w') as f:
            keys = list(savedict.keys())
            keys.sort()
            for key in keys:
                value = savedict[key]
                residue, tit_state = key.rsplit('_', 1)

                f.write(' '.join((residue, tit_state, str(value)))+'\n')
        return

    #
    # ----
    #

    def init_stateboolean(self):
        """Initialize stateboolean for all residues/titratable groups"""
        for pKa in self.pKas:
            residue = pKa.residue
            pKaGroup = pKa.pKaGroup
            ambiguity = pKa.amb
            for titration in pKaGroup.DefTitrations:
                possiblestates = titration.allstates
                for state in possiblestates:
                    # Adding a stateboolean structure (dictionary) here, default values are True, meaning the current protonation state
                    # is allowed to be explored during H-bond optimization. False means not allowed.
                    if not hasattr(residue,'stateboolean'):
                        residue.stateboolean={}
                    residue.stateboolean[self.get_state_name(titration.name, state)] = True
        return

    #
    # ----
    #

#     def calculate_desolvation_for_residues(self,residues,fix_states={}):
#         """Calculate desolvation for individual residues - not necessarily titratable groups.
#         Do this only for the standard charge state of the residue"""
#         self.findTitratableGroups()
#         #
#         # Define all the residue names
#         #
#         calc_residues=residues[:]
#         for calc_res in calc_residues:
#             for chain in self.protein.getChains():
#                 for residue in chain.get("residues"):
#                     resname = residue.get("name")
#                     name='%s:%s:%s' %(chain.chainID,string.zfill(residue.resSeq,4),resname)
#                     #
#                     # Do we have a match?
#                     #
#                     if calc_res==name:
#                         #
#                         # Yes, calculate desolvation for this residue
#                         #
#                         atomlist=[]
#                         atomnames=[]
#                         for atom in residue.getAtoms():
#                             atomlist.append(atom)
#                             atomnames.append(atom.name)
#                         #
#                         # Calculate the self energy for each this residue in solution and in the protein
#                         #
#                         print "---------> Calculating desolvation energy for residue %s in solvent" %(residue.name)
#                         #
#                         # Center the map on our set of atoms
#                         #
#                         center=self.get_atoms_center(atomlist)
#                         self.apbs_setup.setfineCenter(center)
#                         self.apbs_setup.set_type('desolv')
#                         #
#                         # Add hydrogens
#                         #
#                         self.init_stateboolean() # Initialize stateboolean
#                         #
#                         # this is where we fix the protonation state of some groups, if needed
#                         #
#                         for other_pKa in self.pKas:
#                             resname=other_pKa.residue.__str__()
#                             #print resname
#                             if fix_states.has_key(resname):
#                                 for fix_record in fix_states[resname]:
#                                     fix_titration=fix_record['titgroup']
#                                     fix_state=fix_record['state']
#                                     for other_titration in other_pKa.pKaGroup.DefTitrations:
#                                         #print other_titration.name
#                                         if other_titration.name==fix_titration:
#                                             print 'other_titration',other_titration
#                                             print 'Fixing protonation state of %s to %s' %(other_pKa.residue.__str__(),fix_state)
#                                             self.hydrogenRoutines.switchstate('pKa', other_pKa.amb, fix_state)
#                                             #
#                                             # Disallow all other states during Hbond optimization
#                                             #
#                                             possiblestates = other_titration.allstates
#                                             for state in possiblestates:
#                                                 # Adding a stateboolean structure (dictionary) here, default values are True,
#                                                 # meaning the current protonation state
#                                                 # is allowed to be explored during H-bond optimization. False means not allowed.
#                                                 other_pKa.residue.stateboolean[self.get_state_name(other_titration.name, state)] = False
#                                             other_pKa.residue.stateboolean[state]=True
#                             else:
#                                 #
#                                 # Fix in standard protonation state - this should not be needed
#                                 #
#                                 default_states={'ASP':'ASP',
#                                                 'GLU':'GLU',
#                                                 'ARG':'ARG',
#                                                 'LYS':'LYS',
#                                                 'TYR':'TYR',
#                                                 'NTR':'H3+H2',
#                                                 'CTR':'CTR-'}
#                                 for other_titration in other_pKa.pKaGroup.DefTitrations:
#                                     if default_states.has_key(other_titration.name):
#                                         self.hydrogenRoutines.switchstate('pKa',other_pKa.amb,default_states[other_titration.name])
#                                         #
#                                         # Disallow all other states
#                                         #
#                                         possiblestates = other_titration.allstates
#                                         for state in possiblestates:
#                                             # Adding a stateboolean structure (dictionary) here, default values are True,
#                                             # meaning the current protonation state
#                                             # is allowed to be explored during H-bond optimization. False means not allowed.
#                                             other_pKa.residue.stateboolean[self.get_state_name(other_titration.name, state)] = False
#                                         other_pKa.residue.stateboolean[default_states[other_titration.name]]=True
#                         #
#                         # Fixing done, now optimize and calculate
#                         #
#                         #
#
#                         self.hbondOptimization()
#                         self.zeroAllRadiiCharges()
#                         self.setCharges(residue, atomnames)
#                         self.setRadii(residue, atomnames)
#
#                         #
#                         # Run APBS first time for the state in solvent
#                         #
#                         if debug:
#                             CM.set_calc('Desolv solv %s %s' %(residue.resSeq,state))
#
#                         solutionEnergy=self.get_elec_energy(self.getAPBSPotentials(save_results=False),atomlist)
#                         #
#                         # Now we set all radii (= in protein)
#                         #
#                         self.setAllRadii()
#                         #
#                         # Run APBS again, - this time for the state in the protein
#                         #
#
#                         print '--------> Calculating self energy for residue %d %s  in the protein' %(residue.resSeq,residue.name)
#                         proteinEnergy = self.get_elec_energy(self.getAPBSPotentials(save_results=False),atomlist)
#                         #
#                         # Calculate the difference in self energy for this state
#                         #
#                         desolvation = (proteinEnergy - solutionEnergy)/2.0 # Reaction field energy
#                         print 'Desolvation for %s %d is %5.3f kT'  \
#                               %(residue.name,residue.resSeq,desolvation)
#                         #
#                         # Calculate electrostatic interaction energy
#                         #
#                         #
#                         # Set charges on all other residues
#                         #
#                         self.zeroAllRadiiCharges()
#                         self.setAllRadii()
#                         #
#                         # Here we should define the protonation state we want to use
#                         #
#                         for chain in self.protein.getChains():
#                             for otherresidue in chain.get("residues"):
#                                 if residue == otherresidue:
#                                     continue
#                                 #
#                                 # Get list of all the atoms
#                                 #
#                                 otherlist = []
#                                 for atom in otherresidue.atoms:
#                                     if not atom:
#                                         continue
#                                     if atom.get('name').find('FLIP')==-1:
#                                         otherlist.append(atom.get("name"))
#                                 self.setCharges(otherresidue, otherlist)
#                         #
#                         # Center the map on our residue
#                         #
#                         center=self.get_atoms_center(atomlist)
#
#                         all_center,extent=self.apbs_setup.getCenter()
#                         self.apbs_setup.setfineCenter(center)
#                         self.apbs_setup.set_type('background')
#                         #
#                         # Run APBS
#                         #
#                         if debug:
#                             CM.set_calc('background %s %s' %(residue.resSeq,state))
#                         potentials=self.getAPBSPotentials(save_results=False)
#                         #
#                         # Assign charges to our residue
#                         #
#                         self.setCharges(residue, atomnames)
#                         #
#                         # Return the potentials - same order as in atomnames
#                         #
#                         interaction_energy=self.get_elec_energy(potentials,atomlist)
#
#         print 'Desolvation energy: %5.3f kT' %desolvation
#         print 'Interaction energy: %5.3f kT' %interaction_energy
#         return desolvation, interaction_energy, proteinEnergy/2.0,solutionEnergy/2.0


    #
    # ---------
    #

    def get_atoms_center(self,atomlist):
        #
        # Get the centre of a list of atoms
        #
        minmax={'x':[999.9,-999.9],'y':[999.9,-999.9],'z':[999.9,-999.9]}
        for atom in atomlist:
            if atom:
                for axis in ['x','y','z']:
                    coord=getattr(atom,axis)
                    if coord<minmax[axis][0]:
                        minmax[axis][0]=coord
                    if coord>minmax[axis][1]:
                        minmax[axis][1]=coord
        #
        # Calc the geometric center and extent
        #
        center={}
        extent={}
        for axis in list(minmax.keys()):
            extent[axis]=minmax[axis][1]-minmax[axis][0]
            center[axis]=extent[axis]/2.0+minmax[axis][0]
        return [center['x'],center['y'],center['z']]


    #
    # -------------------------------
    #

    def get_elec_energy(self,potentials,atomlist):
        """
        # Given the electrostatic potential from getAPBSPotentials and a list
        # of atoms, this routine returns the energy in kT
        #
        # This function could be made a lot smarter!! (JN)
        """
        energy=0.0
        count=0
        totphi=0.0
        totcrg=0.0
        netcrg=0.0
        found=0
        #
        # Get the potentials
        #
        for atom in self.protein.getAtoms():
            if not atom:
                continue
            for atom_2 in atomlist:
                if not atom_2:
                    continue
                if is_sameatom(atom,atom_2):
                    totcrg=totcrg+abs(atom.get("ffcharge"))
                    netcrg=netcrg+atom.get("ffcharge")
                    totphi=totphi+abs(potentials[-1][count])
                    energy=energy+(potentials[-1][count])*atom.get("ffcharge")
                    #
                    # Flag that we found an atom
                    #
                    found=found+1
                    break
            #
            # This counter is outside the atom_2 loop!!
            #
            count=count+1
            if found==len(atomlist):
                break
        if abs(totphi)<0.01 or abs(totcrg)<0.01:
            print('total abs phi',totphi)
            print('total abs crg',totcrg)
            print('net charge   ',netcrg)
            PDB2PKAError( 'Something is rotten')

        return energy

    #
    # ----------------------------------
    #

    def getAPBSPotentials(self,group=None,titration=None,state=None,cleanup=True,save_results=False):
        """
            Run APBS and get the potentials

            Returns
                list of potentials (list of floats)
        """
        #
        # Do we have results for this calculation?
        #
        loaded=False
        if save_results:
            result_file=os.path.join(self.phidir,'%s_%s_%s.potentials.pickle' %(self.apbs_setup.type,group.uniqueid,self.get_state_name(titration.name,state)))
            if os.path.isfile(result_file):
                #
                # Yes!
                #
                with open(result_file,'rb') as fd:
                    potentials=pickle.load(fd)
                    loaded=True
        #
        # Run calc again if needed
        #
        if not loaded:
            apbs_inputfile=self.apbs_setup.printInput()
            self.APBS=runAPBS()
            potentials = self.APBS.runAPBS(self.protein, apbs_inputfile, self.routines, CM)
            if cleanup:
                self.APBS.cleanup()
                self.APBS=None
            if save_results:
                with open(result_file,'wb') as fd:
                    pickle.dump(potentials,fd)

        return potentials

    #
    # -----
    #

    def getmoreAPBSPotentials(self):
        if not self.APBS:
            PDB2PKAError( 'APBS instance killed')
        return self.APBS.get_potentials(self.protein)

    #
    # ----------------------
    #

    def setRadii(self, residue, atomlist):
        """
            Set the radii for specific atoms in a residue

            Parameters
                residue:  The residue to set (residue)
                atomlist: A list of atomnames (list)
        """
        for atom in residue.getAtoms():
            atomname = atom.get("name")
            if atomname not in atomlist: continue
            charge, radius = self.forcefield.getParams1(residue, atomname)
            if hasattr(atom,'secret_radius'):
                atom.set('radius',atom.secret_radius)
            elif radius != None:
                atom.set("radius", radius)
            else:
                text = "Could not find radius for atom %s" % atomname
                text += " in residue %s %i" % (residue.name, residue.resSeq)
                text += " while attempting to set radius!"
                raise ValueError(text)
    #
    # ------------------------------------
    #

    def setCharges(self, residue, atomlist):
        """
            Set the charges for specific atoms in a residue

            Parameters
                residue:  The residue to set (residue)
                atomlist: A list of atomnames (list)
        """
        for atom in residue.getAtoms():
            atomname = atom.get("name")
            if atomname not in atomlist:
                continue
            charge, radius = self.forcefield.getParams1(residue, atomname)

            if hasattr(atom,'secret_charge'):
                atom.set("ffcharge",atom.secret_charge)
            elif charge != None:
                atom.set("ffcharge", charge)
            else:
                text = "Could not find charge for atom %s" % atomname
                text += " in residue %s %i" % (residue.name, residue.resSeq)
                text += " while attempting to set charge!"
                raise ValueError(text)
        return
    #
    # ----------------------------
    #

    def setAllRadii(self):
        """
            Set all radii for the entire protein
        """
        for chain in self.protein.getChains():
            for residue in chain.get("residues"):
                for atom in residue.get("atoms"):
                    atomname = atom.get("name")
                    if atomname.find('FLIP')!=-1:
                        continue
                    else:
                        charge, radius = self.forcefield.getParams1(residue, atomname)
                    ###PC

                    if hasattr(atom,'secret_radius'):
                        atom.set("radius",atom.secret_radius)
                    elif radius != None:
                        atom.set("radius", radius)
                    else:
                        if residue.type != 2:
                            text = "Could not find radius for atom %s " % atomname
                            text +="in residue %s %i" % (residue.name, residue.resSeq)
                            text += " while attempting to set all radii!"
                            raise PDB2PKAError(text)
    #
    # -------------------------------
    #

    def zeroAllRadiiCharges(self):
        """
            Set all charges and radii for the protein to zero
        """
        for chain in self.protein.getChains():
            for residue in chain.get("residues"):
                for atom in residue.get("atoms"):
                    atom.set("ffcharge",0.0)
                    atom.set("radius",0.0)
    #
    # --------------------------------
    #

    def getAtomsForPotential(self, pKa,titration, get_neutral_state=None):
        """
        #    Find the atoms that are needed for measuring the potential,
        #    only selecting atoms where the charge changes.
        #    Parameters
        #        pKa:  The pKa object (pKa)
        #    Returns:
        #        atomnames:  A list of atomnames to measure (list)
        """
        neutral_state=None
        atomnames = []
        newatomnames = []
        initialmap = {}
        residue = pKa.residue
        pKaGroup = pKa.pKaGroup
        ambiguity = pKa.amb
        #states = self.hydrogenRoutines.getstates(ambiguity)
        #
        # Change to the start state
        #
        start_state=titration.startstates[0]
        start_state=self.get_state_name(titration.name,start_state)
        self.hydrogenRoutines.switchstate('pKa', ambiguity, start_state)
        sum=0.0
        for atom in residue.getAtoms():
            atomname = atom.get("name")
            if atomname.find('FLIP')!=-1:
                continue

            charge, radius = self.forcefield.getParams1(residue, atomname)
            initialmap[atomname] = charge
            if charge is None:
                print(atomname,charge)
                print(residue.isCterm)
                raise PDB2PKAError('Charge on atom is None')
            sum+=charge
        if abs(sum)<0.001:
            neutral_state=start_state
        #
        # Check if charges change in all other states
        #

        for state in titration.endstates+titration.startstates[1:]:
            self.hydrogenRoutines.switchstate('pKa', ambiguity, self.get_state_name(titration.name,state))
            #
            # Check that no charges changed and that no atoms were added
            #
            sum=0.0
            for atom in residue.getAtoms():
                atomname = atom.get("name")
                if atomname.find('FLIP')!=-1:
                    continue

                charge, radius = self.forcefield.getParams1(residue, atomname)
                sum=sum+charge
                if atomname in initialmap:
                    initcharge = initialmap[atomname]
                    if charge != initcharge:
                        if not atomname in atomnames:
                            atomnames.append(atomname)
                else:
                    if not atomname in atomnames:
                        atomnames.append(atomname)
            #
            # Check that no atoms were removed
            #
            for atom in list(initialmap.keys()):
                if not atom in residue.get('map'):
                    atomnames.append(atom)
        #
        # Make sure that the charges add up to integers by adding extra atoms
        #
        sum=0.01
        while sum>0.001:
            sum=0.0
            added=None
            neutral_state=None
            #
            # Loop over all states to find atoms to add
            #
            for state in titration.endstates+titration.startstates:
                self.hydrogenRoutines.switchstate('pKa', ambiguity, self.get_state_name(titration.name,state))
                #
                # Sum this state
                #
                this_sum=0.0
                for atom in residue.atoms:
                    atomname = atom.get("name")
                    if atomname.find('FLIP')!=-1:
                        continue
                    if not atomname in atomnames:
                        continue
                    charge, radius = self.forcefield.getParams1(residue, atomname)
                    this_sum=this_sum+charge
                #
                # Is this the first neutral state?
                #
                if abs(this_sum)<0.0001:
                    if not neutral_state:
                        neutral_state=state
                #
                # Is this an integer charge?
                #
                diff=float(abs(1000.0*this_sum)-abs(1000.0*int(this_sum)))/1000.0
                sum=sum+diff
                if diff>0.001:
                    #
                    # Find all atoms one bond away
                    #
                    add_atoms=[]
                    for atom in residue.atoms:
                        atomname=atom.get('name')
                        if atomname.find('FLIP')!=-1:
                            continue
                        if not atomname in atomnames:
                            continue
                        #
                        # Add all atoms that are not already added
                        #
                        for bound_atom in atom.bonds:
                            if type(bound_atom) is str:
                                if not bound_atom in atomnames:
                                    add_atoms.append(bound_atom)
                                    added=1
                            else:
                                if not bound_atom.name in atomnames:
                                    add_atoms.append(bound_atom.name)
                                    added=1
                    #
                    # Update atomnames
                    #
                    for addatom in add_atoms:
                        if not addatom in atomnames:
                            atomnames.append(addatom)
                #
                # Next state
                #
                pass
            #
            # Did we add anything?
            #
            if added is None and sum>0.001:
                print(sum)
                print(atomnames)
                PDB2PKAError('Could not find integer charge state')
        #
        # Did we just want a neutral state identification?
        #
        if get_neutral_state:
            if not neutral_state:
                PDB2PKAError( "no neutral state for " + str(residue.resSeq))
            return neutral_state
        #
        # No, we wanted the atomnames
        #
        if atomnames==[]:
            print('Did not find any atoms for ',residue.resSeq)
            PDB2PKAError('Something wrong with charges')

        for atomname in atomnames:
            if not atomname in newatomnames:
                newatomnames.append(atomname)
        return newatomnames

    #
    # -------------------------------
    #


    def findTitratableGroups(self):
        """
            Find all titratable groups in the protein based on the definition

            We do a simple name-matching on residue names and titration group names, and
            also a Cterm/Nterm matching.

            We need to build in checks for post-translational modifications

            Returns
                pKalist:  A list of pKa objects (list)
        """
        pKalist = []

        self.routines.write("Finding Titratable groups....\n")
        sys.stdout.flush()
        #
        pKagroupList=list(self.pKagroups.keys())
        #
        for chain in self.protein.getChains():
            for residue in chain.get("residues"):
                resname = residue.get("name")
                for group in pKagroupList:
                    if resname == group:
                        amb=self.find_hydrogen_amb_for_titgroup(residue,group)
                        thispKa = pKa(residue, self.pKagroups[group], amb)
                        pKalist.append(thispKa)
                        self.routines.write("%s %s\n" % (resname, residue.resSeq), indent=1)
                    elif group=='NTR':
                        if residue.isNterm:
                            #
                            # N-terminus
                            #
                            amb=self.find_hydrogen_amb_for_titgroup(residue,group)
                            thispKa=pKa(residue,self.pKagroups[group],amb)
                            pKalist.append(thispKa)
                            self.routines.write("%s %s\n" % (resname, residue.resSeq), indent=1)
                    elif group=='CTR':
                        if residue.isCterm:
                            #
                            # C-terminus
                            #
                            amb=self.find_hydrogen_amb_for_titgroup(residue,group)
                            thispKa=pKa(residue,self.pKagroups[group],amb)
                            pKalist.append(thispKa)
                            self.routines.write("%s %s\n" % (resname, residue.resSeq), indent=1)
        #
        # Find a neutral state for each group
        #
        self.neutral_ref_state={}
        for this_pka in pKalist:
            residue = this_pka.residue
            pKaGroup = this_pka.pKaGroup
            ambiguity = this_pka.amb
            self.neutral_ref_state[this_pka]={}
            for titration in pKaGroup.DefTitrations:
                neutral_state = self.getAtomsForPotential(this_pka,titration,get_neutral_state=1)
                self.neutral_ref_state[this_pka][titration]=neutral_state
        #
        # Store pKa groups in self.pKas
        #
        self.pKas=pKalist
        return

    #
    # ----------------------------------
    #

    def find_hydrogen_amb_for_titgroup(self,residue,group):
        """Find the hydrogen ambiguity that controls the protonation state for the
        titratable group within the given residue"""
        amb = None
        self.hydrogenRoutines.readHydrogenDefinition()
        for hydrodef in self.hydrogenRoutines.hydrodefs:
            hydname = hydrodef.name
            if hydname == group: # or group in residue.patches: (for ASP/ASH, GLU/GLH)
                amb = hydrogenAmbiguity(residue, hydrodef,self.routines)
            elif group == 'ASP':
                if hydname == 'ASH':
                    amb = hydrogenAmbiguity(residue, hydrodef,self.routines)
                    self.routines.applyPatch('ASH', residue)
            elif group == 'GLU':
                if hydname == 'GLH':
                    amb = hydrogenAmbiguity(residue, hydrodef,self.routines)
                    self.routines.applyPatch('GLH', residue)
        if amb == None:
            text = "Could not find hydrogen ambiguity "
            text += "for titratable group %s!" % group
            raise ValueError(text)
        return amb

    #
    # ----------------------------------
    #

    def readTitrationDefinition(self):
        """
            Read the Titration Definition

            Returns:
               mygroups: A dictionary of pKaGroups
        """
        mygroups = {}
        titrationdict = {'ASH1c': '1', 'ASH1t': '2', 'ASH2c': '3', 'ASH2t': '4', 'ASP': '0',
                         'GLH1c': '1', 'GLH1t': '2', 'GLH2c': '3', 'GLH2t': '4', 'GLU': '0',
                         'ARG0': '1+2+3+4', 'ARG': '1+2+3+4+5',
                         'LYS': '1', 'LYS0': '0',
                         'TYR': '1', 'TYR-': '0',
                         'HSD': '1', 'HSE': '2', 'HSP': '1+2',
                         'H3': '1', 'H2': '2', 'H3+H2': '1+2',
                         'CTR01c': '1', 'CTR01t': '2', 'CTR02c': '3', 'CTR02t': '4', 'CTR-': '0'}
        filename = TITRATIONFILE
        if not os.path.isfile(TITRATIONFILE):
            raise ValueError("Could not find TITRATION.DAT!")

        titration_file = open(filename)

        while 1:
            line=titration_file.readline()
            if line.startswith("//"): pass
            elif line == '': break
            elif line[0]=='*':
                name = ""
                resname = ""
                type = ""
                titrations = []

                name = string.strip(line[1:])
                line = titration_file.readline()
                if line[:8] != 'Residue:':
                    text = "Wrong line found when looking for 'Residue'"
                    raise ValueError("%s: %s" % (text, line))

                resname = string.strip(string.split(line)[1])

                line = titration_file.readline()
                if line[:10] != 'Grouptype:':
                    text = "Wrong line found when looking for 'Grouptype'"
                    raise ValueError("%s: %s" % (text, line))

                type = string.lower(string.strip(string.split(line)[1]))
                if type != 'acid' and type != 'base':
                    raise ValueError('Group type must be acid or base!')

                line = titration_file.readline()
                while 1:
                    """ Find next transition """
                    #
                    # Skip comments
                    #
                    while line[:2]=='//':
                        line=titration_file.readline()

                    startstates = []
                    endstates = []
                    modelpKa = None

                    if line[:11] != 'Transition:':
                        text = "Wrong line found when looking for 'Transition:'"
                        raise ValueError("%s: %s" % (text, line))

                    split=string.split(line[11:],'->')
                    for number in string.split(split[0], ','):
                        startstates.append(titrationdict[string.strip(number)])
                    for number in string.split(split[1], ','):
                        endstates.append(titrationdict[string.strip(number)])

                    line = titration_file.readline()
                    #
                    # Skip comments
                    #
                    while line[:2]=='//':
                        line=titration_file.readline()
                    #
                    # Must be the model pKa line
                    #
                    if line[:10]!='Model_pKa:':
                        text = "Wrong line found when looking for 'Model_pKa'"
                        raise ValueError("%s: %s" % (text, line))

                    modelpKa = float(string.split(line)[1])

                    thisTitration = DefTitration(startstates, endstates,modelpKa,name)
                    titrations.append(thisTitration)

                    line = titration_file.readline()
                    if line.strip() == 'END': break

                thisGroup = pKaGroup(name, resname, type, titrations)
                mygroups[name] = thisGroup

                line = titration_file.readline()
                if line.strip() == 'END OF FILE': break

        return mygroups

    def get_state_name(self, titrationname, state):
        """
            Get the titration state name from numbers
            Returns: real titration state name as in TITRATION.DAT
        """
        reverse_titrationdict = {}
        if titrationname == 'ASP':
            reverse_titrationdict = {'1': 'ASH1c', '2': 'ASH1t', '3': 'ASH2c', '4': 'ASH2t', '0': 'ASP'}
        elif titrationname == 'GLU':
            reverse_titrationdict = {'1': 'GLH1c', '2': 'GLH1t', '3': 'GLH2c', '4': 'GLH2t', '0': 'GLU'}
        elif titrationname == 'ARG':
            reverse_titrationdict = {'1+2+3+4': 'ARG0', '1+2+3+4+5': 'ARG'}
        elif titrationname == 'LYS':
            reverse_titrationdict = {'1': 'LYS', '0': 'LYS0'}
        elif titrationname == 'TYR':
            reverse_titrationdict = {'1': 'TYR', '0': 'TYR-'}
        elif titrationname == 'HIS':

            reverse_titrationdict = {'1': 'HSD', '2': 'HSE', '1+2': 'HSP'}
        elif titrationname == 'NTR':
            reverse_titrationdict = {'1': 'H3', '2': 'H2', '1+2': 'H3+H2'}
        elif titrationname == 'CTR':
            reverse_titrationdict = {'1': 'CTR01c', '2': 'CTR01t', '3': 'CTR02c', '4': 'CTR02t', '0': 'CTR-'}
        return reverse_titrationdict[state]

#
# -----------------------------------------------
#

def smooth(xdiel,ydiel,zdiel):
    print('\nSmooting dielectric constant using Gaussian filter:\n')

    diel=[xdiel,ydiel,zdiel]
    for d in diel:
        os.system('%s/smooth --format=dx --input=%s --output=%s_smooth.dx --filter=gaussian --stddev=%d --bandwidth=3'%(scriptpath,d,d[:-3],sd))
    xdiel_smooth='%s_smooth.dx' % xdiel[:-3]
    ydiel_smooth='%s_smooth.dx' % ydiel[:-3]
    zdiel_smooth='%s_smooth.dx' % zdiel[:-3]

    return xdiel_smooth, ydiel_smooth, zdiel_smooth
#
# -----------------------------------------------
#

if __name__ == "__main__":
    from pprint import pprint

    def frange(x, y, jump):
        while x < y:
            yield x
            x += jump

    ph_list = list(frange(0.0, 20.01, 0.10))
    ph_count = len(ph_list)

    one_to_zero_list = list(frange(0.0, 1.0, 0.005))
    one_to_zero_list.reverse()
    one_to_zero = dict((ph,charge) for ph, charge in zip(ph_list, one_to_zero_list))

    zero_to_neg_one_list = list(frange(-1.0, 0.0, 0.005))
    zero_to_neg_one_list.reverse()
    zero_to_neg_one = dict((ph,charge) for ph, charge in zip(ph_list, zero_to_neg_one_list))

    class Dummy(object):
        def __init__(self):
            self.warnings = []
            self.ph_at_0_5 = {}



    print("These should pass without issue")
    print("Run acid curve")
    routines = pKaRoutines(None, None, None, None, '', maps = None, sd =None,
                 restart=False, pairene=1.0, test_mode=True)
    routines.find_pH_at_0_5('zero_to_neg_one curve base', zero_to_neg_one, False)

    print("Run base curve")
    routines.find_pH_at_0_5('one_to_zero curve acid', one_to_zero, True)

    print("These should print warnings")
    all_zero_curve = dict((ph,0.0) for ph in ph_list)
    print("Run all zero curves")
    routines.find_pH_at_0_5('All zero curve acid', all_zero_curve, False)
    routines.find_pH_at_0_5('All zero curve base', all_zero_curve, True)


    short_zero_to_one_list = list(frange(0.0, 1.0, 0.010))
    short_one_to_zero_list = short_zero_to_one_list[:]
    short_one_to_zero_list.reverse()
    one_to_zero_and_back = short_one_to_zero_list + short_zero_to_one_list
    one_to_zero_and_back_dict = dict((ph,charge) for ph, charge in zip(ph_list, one_to_zero_and_back))
    routines.find_pH_at_0_5('one_to_zero_and_back curve base', one_to_zero_and_back_dict, True)


    zero_to_neg_one_and_back_dict = dict((ph,charge-1.0) for ph, charge in zip(ph_list, one_to_zero_and_back))
    routines.find_pH_at_0_5('zero_to_neg_one_and_back curve acid', zero_to_neg_one_and_back_dict, False)

    positive_interpolation_curve = {0.0:1.0,
                                    1.0:1.0,
                                    2.0:1.0,
                                    3.0:1.0,
                                    4.0:0.6,
                                    5.0:0.3,
                                    6.0:0.1,
                                    7.0:0.0,
                                    8.0:0.0}

    routines.find_pH_at_0_5('positive_interpolation_curve base', positive_interpolation_curve, True)

    negative_interpolation_curve = {0.0:0.0,
                                    1.0:0.0,
                                    2.0:0.0,
                                    3.0:0.0,
                                    4.0:-0.1,
                                    5.0:-0.3,
                                    6.0:-0.7,
                                    7.0:-1.0,
                                    8.0:-1.0}

    routines.find_pH_at_0_5('negative_interpolation_curve acid', negative_interpolation_curve, False)

    print('Accumulated warnings:')
    pprint(routines.warnings)
    print('ph values:')
    pprint(routines.ph_at_0_5)