1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
|
#!/usr/bin/python3
#
# pKa calculations with APBS
#
# Copyright University College Dublin & Washington University St. Louis 2004-2007
# All rights reserved
#
#
# Get paths
#
debug=False
import optparse
import sys, os
from src.definitions import Definition
from src.forcefield import Forcefield
from src.routines import Routines
from src.protein import getPDBFile, readPDB, Protein, Amino, Nucleic
from src.aa import LIG
from src.errors import PDB2PKAError
from pdb2pka import inputgen_pKa
from pdb2pka.pka_routines import smooth
from pdb2pka import pka_help
def usage(x):
#
# Print usage guidelines
#
print('Usage: pka.py --ff <forcefield> --lig <ligand in MOL2> --pdie <protein diel cons> --maps <1 for using provided 3D maps; 2 for genereting new maps>')
print('--xdiel <xdiel maps> --ydiel <ydiel maps> --zdiel <zdiel maps> --kappa <ion-accessibility map> ')
print('--smooth <st.dev [A] of Gaussian smooting of 3D maps at the boundary, bandthwith=3 st.dev> <pdbfile>')
print('Force field can be amber, charmm and parse')
print()
return
#
# --------------------------------------------------
#
def startpKa():
"""
Function for starting pKa script from the command line.
Returns
protein: The protein object as generated by PDB2PQR
routines: The routines object as generated by PDB2PQR
forcefield: The forcefield object as generated by PDB2PQR
"""
print()
print('PDB2PQR pKa calculations')
print()
parser = optparse.OptionParser()
##
## set optparse options
##
parser.add_option(
'-v','--verbose',
dest='verbose',
action="store_true",
default=False,
)
parser.add_option(
'--pdie',
dest='pdie',
default=8,
type='int',
help='<protein dielectric constant>',
)
parser.add_option(
'--sdie',
dest='sdie',
default=80,
type='int',
help='<solvent dielectric constant>',
)
parser.add_option(
'--ff',
dest='ff',
type='choice',
default='parse',
choices=("amber","AMBER","charmm","CHARMM","parse","PARSE",),
help='<force field (amber, charmm, parse)>',
)
parser.add_option(
'--resume',
dest='resume',
action="store_true",
default=False,
help='resume run from saved state.',
)
parser.add_option(
'--ligand',
dest='ligand',
type='str',
help='<ligand in MOL2 format>',
)
parser.add_option(
'--maps',
dest='maps',
default=None,
type='int',
help='<1 for using provided 3D maps; 2 for genereting new maps>',
)
parser.add_option(
'--xdiel',
dest='xdiel',
default=None,
type='str',
help='<xdiel maps>',
)
parser.add_option(
'--ydiel',
dest='ydiel',
default=None,
type='str',
help='<ydiel maps>',
)
parser.add_option(
'--zdiel',
dest='zdiel',
default=None,
type='str',
help='<zdiel maps>',
)
parser.add_option(
'--kappa',
dest='kappa',
default=None,
type='str',
help='<ion-accessibility map>',
)
parser.add_option(
'--smooth',
dest='sd',
default=None,
type='float',
help='<st.dev [A] of Gaussian smooting of 3D maps at the boundary, bandthwith=3 st.dev>',
)
#
# Cut off energy for calculating non-charged-charged interaction energies
#
parser.add_option('--pairene',dest='pairene',type='float',default=1.0,
help='Cutoff energy in kT for calculating non charged-charged interaction energies. Default: %default')
#
# Options for doing partial calculations
#
parser.add_option('--res_energy',
dest='desolvation_res',
default=[],
action='append',
type='string',
help='Calculate desolvation energy and interaction energy for this residue in its default protonation state. Protonation states can be specified with the --protonation_state argument')
parser.add_option('--PS_file',dest='PS_file',default='',type='string',action='store',help='Set protonation states according to the pdb2pka protonation state file (option --PS_file)')
(options,args,) = parser.parse_args()
##
## parse optparse options
##
ff = options.ff.lower()
pdie = options.pdie
verbose = options.verbose
sdie = options.sdie
maps = options.maps
xdiel = options.xdiel
ydiel = options.ydiel
zdiel = options.zdiel
kappa = options.kappa
sd = options.sd
#
# Find the PDB file
#
if len(args) != 2:
parser.error("Usage: pka.py [options] <pdbfile> <output directory>\n")
input_path = args[0]
output_path = args[1]
ligand = None
if options.ligand is not None:
try:
ligand = open(options.ligand, 'rU')
except IOError:
print('Unable to find ligand file %s! Skipping...' % options.ligand)
#Set up the protien object
#In the standalone version of pdb2pka this is redundent but needed so we emulate the
#interface needed by pdb2pqr
pdbfile = getPDBFile(input_path)
pdblist, errlist = readPDB(pdbfile)
if len(errlist) != 0 and verbose:
print("Warning: %s is a non-standard PDB file.\n" %input_path)
print(errlist)
#
# Read the definition file
#
myDefinition = Definition()
#
#
# Choose whether to include the ligand or not
#
# Add the ligand to the pdb2pqr arrays
#
if ligand is None:
myProtein = Protein(pdblist, myDefinition)
else:
from pdb2pka.ligandclean import ligff
myProtein, _, _ = ligff.initialize(myDefinition, ligand, pdblist, verbose)
#
# Call the pre_init function
#
return pre_init(protein=myProtein,
output_dir=output_path,
ff=ff,
verbose=verbose,
pdie=pdie,
sdie=sdie,
maps=maps,
xdiel=xdiel,
ydiel=ydiel,
zdiel=zdiel,
kappa=kappa,
sd=sd,
ligand=ligand),options
def pre_init(original_pdb_list=None,
output_dir=None,
ff=None,
verbose=False,
pdie=8.0,
sdie=80,
maps=None,
xdiel=None,
ydiel=None,
zdiel=None,
kappa=None,
sd=None,
ligand=None):
"""This function cleans the PDB and prepares the APBS input file
Prepares the output folder."""
#prepare the output directory
output_dir = os.path.abspath(output_dir)
try:
os.makedirs(output_dir)
except OSError:
if not os.path.isdir(output_dir):
raise ValueError('Target directory is a file! Aborting.')
workspace_dir = os.path.join(output_dir,'workspace')
try:
os.makedirs(workspace_dir)
except OSError:
if not os.path.isdir(output_dir):
raise ValueError('Target directory is a file! Aborting.')
#
# remove hydrogen atoms
#
working_pdb_filename = os.path.join(workspace_dir,'working.pdb')
pka_help.dump_protein_no_hydrogens(original_pdb_list, working_pdb_filename)
#
# Get the PDBfile
#
pdbfile = getPDBFile(working_pdb_filename)
pdblist, errlist = readPDB(pdbfile)
if verbose:
print("Beginning PDB2PKA...\n")
#
# Read the definition file
#
myDefinition = Definition()
ligand_titratable_groups=None
#
#
# Choose whether to include the ligand or not
#
# Add the ligand to the pdb2pqr arrays
#
Lig=None
if ligand is None:
myProtein = Protein(pdblist, myDefinition)
else:
from pdb2pka.ligandclean import ligff
myProtein, myDefinition, Lig = ligff.initialize(myDefinition, ligand, pdblist, verbose)
#
# =======================================================================
#
# We have identified the structural elements, now contiue with the setup
#
# Print something for some reason?
#
if verbose:
print("Created protein object -")
print("\tNumber of residues in protein: %s" % myProtein.numResidues())
print("\tNumber of atoms in protein : %s" % myProtein.numAtoms())
#
# Set up all other routines
#
myRoutines = Routines(myProtein, verbose) #myDefinition)
myRoutines.updateResidueTypes()
myRoutines.updateSSbridges()
myRoutines.updateBonds()
myRoutines.setTermini()
myRoutines.updateInternalBonds()
myRoutines.applyNameScheme(Forcefield(ff, myDefinition, None))
myRoutines.findMissingHeavy()
myRoutines.addHydrogens()
myRoutines.debumpProtein()
#myRoutines.randomizeWaters()
myProtein.reSerialize()
#
# Inject the information on hydrogen conformations in the HYDROGENS.DAT arrays
# We get this information from ligand_titratable_groups
#
from src.hydrogens import hydrogenRoutines
myRoutines.updateInternalBonds()
myRoutines.calculateDihedralAngles()
myhydRoutines = hydrogenRoutines(myRoutines)
#
# Here we should inject the info!!
#
myhydRoutines.setOptimizeableHydrogens()
myhydRoutines.initializeFullOptimization()
myhydRoutines.optimizeHydrogens()
myhydRoutines.cleanup()
myRoutines.setStates()
#
# Choose the correct forcefield
#
myForcefield = Forcefield(ff, myDefinition, None)
if Lig:
hitlist, misslist = myRoutines.applyForcefield(myForcefield)
#
# Can we get charges for the ligand?
#
templist=[]
ligsuccess=False
for residue in myProtein.getResidues():
if isinstance(residue, LIG):
templist = []
Lig.make_up2date(residue)
net_charge=0.0
print('Ligand',residue)
print('Atom\tCharge\tRadius')
for atom in residue.getAtoms():
if atom.mol2charge:
atom.ffcharge=atom.mol2charge
else:
atom.ffcharge = Lig.ligand_props[atom.name]["charge"]
#
# Find the net charge
#
net_charge=net_charge+atom.ffcharge
#
# Assign radius
#
atom.radius = Lig.ligand_props[atom.name]["radius"]
print('%s\t%6.4f\t%6.4f' %(atom.name,atom.ffcharge,atom.radius))
if atom in misslist:
misslist.pop(misslist.index(atom))
templist.append(atom)
#
# Store the charge and radius in the atom instance for later use
# This really should be done in a nicer way, but this will do for now
#
atom.secret_radius=atom.radius
atom.secret_charge=atom.ffcharge
#
#
charge = residue.getCharge()
if abs(charge - round(charge)) > 0.01:
# Ligand parameterization failed
myProtein.residues.remove(residue)
raise Exception('Non-integer charge on ligand: %8.5f' %charge)
else:
ligsuccess = 1
# Mark these atoms as hits
hitlist = hitlist + templist
#
# Print the net charge
#
print('Net charge for ligand %s is: %5.3f' %(residue.name,net_charge))
#
# Temporary fix; if ligand was successful, pull all ligands from misslist
# Not sure if this is needed at all here ...? (Jens wrote this)
#
if ligsuccess:
templist = misslist[:]
for atom in templist:
if isinstance(atom.residue, Amino) or isinstance(atom.residue, Nucleic):
continue
misslist.remove(atom)
if verbose:
print("Created protein object (after processing myRoutines) -")
print("\tNumber of residues in protein: %s" % myProtein.numResidues())
print("\tNumber of atoms in protein : %s" % myProtein.numAtoms())
#
# Create the APBS input file
#
import src.psize
size=src.psize.Psize()
method=""
split=0
igen = inputgen_pKa.inputGen(working_pdb_filename)
#
# For convenience
#
igen.pdie = pdie
print('Setting protein dielectric constant to ',igen.pdie)
igen.sdie=sdie
igen.maps=maps
if maps==1:
print("Using dielectric and mobile ion-accessibility function maps in PBE")
if xdiel:
igen.xdiel = xdiel
else:
raise PDB2PKAError('X dielectric map is missing')
if ydiel:
igen.ydiel = ydiel
else:
raise PDB2PKAError("Y dielectric map is missing\n")
if zdiel:
igen.zdiel = zdiel
else:
raise PDB2PKAError("Z dielectric map is missing\n")
print('Setting dielectric function maps: %s, %s, %s'%(igen.xdiel,igen.ydiel,igen.zdiel))
if kappa:
igen.kappa = kappa
else:
raise PDB2PKAError("Mobile ion-accessibility map is missing\n")
print('Setting mobile ion-accessibility function map to: ',igen.kappa)
if sd:
xdiel_smooth, ydiel_smooth, zdiel_smooth = smooth(xdiel,ydiel,zdiel)
igen.xdiel = xdiel_smooth
igen.ydiel = ydiel_smooth
igen.zdiel = zdiel_smooth
#
# Return all we need
#
return output_dir, myProtein, myRoutines, myForcefield,igen, ligand_titratable_groups, maps, sd
#
# --------------
#
if __name__ == "__main__":
(output_dir, protein, routines, forcefield,apbs_setup, ligand_titratable_groups, maps, sd), options = startpKa()
from pdb2pka import pka_routines
mypkaRoutines = pka_routines.pKaRoutines(protein, routines, forcefield, apbs_setup, output_dir, maps, sd,
restart=not options.resume, pairene=options.pairene)
print('Doing full pKa calculation')
mypkaRoutines.runpKa()
|