1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
|
#
# * This library is free software; you can redistribute it and/or
# * modify it under the terms of the GNU Lesser General Public
# * License as published by the Free Software Foundation; either
# * version 2.1 of the License, or (at your option) any later version.
# *
# * This library is distributed in the hope that it will be useful,
# * but WITHOUT ANY WARRANTY; without even the implied warranty of
# * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# * Lesser General Public License for more details.
#
#propka3.0, revision 182 2011-08-09
#-------------------------------------------------------------------------------------------------------
#-- --
#-- PROPKA: A PROTEIN PKA PREDICTOR --
#-- --
#-- VERSION 3.0, 01/01/2011, COPENHAGEN --
#-- BY MATS H.M. OLSSON AND CHRESTEN R. SONDERGARD --
#-- --
#-------------------------------------------------------------------------------------------------------
#
#
#-------------------------------------------------------------------------------------------------------
# References:
#
# Very Fast Empirical Prediction and Rationalization of Protein pKa Values
# Hui Li, Andrew D. Robertson and Jan H. Jensen
# PROTEINS: Structure, Function, and Bioinformatics 61:704-721 (2005)
#
# Very Fast Prediction and Rationalization of pKa Values for Protein-Ligand Complexes
# Delphine C. Bas, David M. Rogers and Jan H. Jensen
# PROTEINS: Structure, Function, and Bioinformatics 73:765-783 (2008)
#
# PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa predictions
# Mats H.M. Olsson, Chresten R. Sondergard, Michal Rostkowski, and Jan H. Jensen
# Journal of Chemical Theory and Computation, 7, 525-537 (2011)
#-------------------------------------------------------------------------------------------------------
import math, random, string
from .lib import pka_print
def InterAtomDistance(atom1, atom2):
"""
calculates distance between atom1 and atom2
"""
dX = atom1.x - atom2.x
dY = atom1.y - atom2.y
dZ = atom1.z - atom2.z
return math.sqrt( dX*dX + dY*dY + dZ*dZ )
def InterResidueDistance(residue1, residue2):
"""
calculates distance between atom1 and atom2
"""
dX = residue1.x - residue2.x
dY = residue1.y - residue2.y
dZ = residue1.z - residue2.z
return math.sqrt( dX*dX + dY*dY + dZ*dZ )
def AngleFactorX(atom1=None, atom2=None, atom3=None, center=None):
"""
Calculates the distance and angle-factor from three atoms for back-bone interactions,
IMPORTANT: you need to use atom1 to be the e.g. ASP atom if distance is reset at return: [O1 -- H2-N3]
Also generalized to be able to be used for residue 'centers' for C=O COO interactions.
"""
dX_32 = atom2.x - atom3.x
dY_32 = atom2.y - atom3.y
dZ_32 = atom2.z - atom3.z
distance_23 = math.sqrt( dX_32*dX_32 + dY_32*dY_32 + dZ_32*dZ_32 )
dX_32 = dX_32/distance_23
dY_32 = dY_32/distance_23
dZ_32 = dZ_32/distance_23
if atom1 == None:
dX_21 = center[0] - atom2.x
dY_21 = center[1] - atom2.y
dZ_21 = center[2] - atom2.z
else:
dX_21 = atom1.x - atom2.x
dY_21 = atom1.y - atom2.y
dZ_21 = atom1.z - atom2.z
distance_12 = math.sqrt( dX_21*dX_21 + dY_21*dY_21 + dZ_21*dZ_21 )
dX_21 = dX_21/distance_12
dY_21 = dY_21/distance_12
dZ_21 = dZ_21/distance_12
f_angle = dX_21*dX_32 + dY_21*dY_32 + dZ_21*dZ_32
return distance_12, f_angle, distance_23
def linearCoulombEnergy(distance, weight, version, options=None):
"""
calculates the Coulomb interaction pKa shift
"""
DIS1 = version.coulomb_cutoff[0]
DIS2 = version.coulomb_cutoff[1]
value = 1.0-(distance-DIS1)/(DIS2-DIS1)
value = min(1.0, value)
value = max(0.0, value)
dpka = version.coulomb_maxpka * value * weight
return abs(dpka)
def CoulombEnergy(distance, weight, version, options=None):
"""
calculates the Coulomb interaction pKa shift based on Coulombs law
eps = 60.0 for the moment; to be scaled with 'weight'
"""
# setting the dielectric constant
if isinstance(version.coulomb_diel, list):
diel = version.coulomb_diel[1] - (version.coulomb_diel[1]-version.coulomb_diel[0])*weight
elif isinstance(version.coulomb_diel, float):
diel = version.coulomb_diel
elif isinstance(version.coulomb_diel, int):
diel = version.coulomb_diel
R = max(distance, version.coulomb_cutoff[0])
dpka =244.12/(diel*R) - 244.12/(diel*version.coulomb_cutoff[1])
if version.coulomb_scaled == True:
dpka = dpka*weight
return abs(dpka)
def distanceScaledCoulombEnergy(distance, weight, version, options=None):
"""
calculates the Coulomb interaction pKa shift based on Coulombs law
eps = 60.0 for the moment; to be scaled with 'weight'
"""
# setting the dielectric constant
if isinstance(version.coulomb_diel, list):
diel = version.coulomb_diel[1] - (version.coulomb_diel[1]-version.coulomb_diel[0])*weight
elif isinstance(version.coulomb_diel, float):
diel = version.coulomb_diel
elif isinstance(version.coulomb_diel, int):
diel = version.coulomb_diel
# making sure short contacts doesn't blow up
R = max(distance, version.coulomb_cutoff[0])
# making sure that the Coulomb dies off at cutoff[1] in a nice way.
scale = ( R - version.coulomb_cutoff[1] ) / ( version.coulomb_cutoff[0] - version.coulomb_cutoff[1] )
scale = max(0.0, scale)
scale = min(1.0, scale)
dpka = 244.12/(diel*R) * scale
return abs(dpka)
def MixedCoulombEnergy(distance, weight, version, options=None):
"""
calculates the Coulomb interaction pKa shift based on Coulombs law
eps = 60.0 for the moment; to be scaled with 'weight'
"""
R = max(distance, version.coulomb_cutoff[0])
eps = (1 + 39*(1 - math.exp(-0.18*R)))
dpka_sur = 244.12/(80.*R) - 244.12/(80.*version.coulomb_cutoff[1])
dpka_bur = 244.12/(eps*R) - 244.12/(eps*version.coulomb_cutoff[1])
dpka = weight*dpka_bur + (1.0-weight)*dpka_sur
return abs(dpka)
def HydrogenBondEnergy(distance, dpka_max, cutoff, f_angle=1.0):
"""
returns a hydrogen-bond interaction pKa shift
"""
if distance < cutoff[0]:
value = 1.00
elif distance > cutoff[1]:
value = 0.00
else:
value = 1.0-(distance-cutoff[0])/(cutoff[1]-cutoff[0])
dpKa = dpka_max*value*f_angle
return abs(dpKa)
def buriedRatio(Nmass):
"""
returns the buried ratio given Nmass
"""
Nmin = 300.0
Nmax = 600.0
buried_ratio = (float(Nmass) - Nmin)/(Nmax - Nmin)
buried_ratio = max(0.00, buried_ratio)
buried_ratio = min(1.00, buried_ratio)
return buried_ratio
def radialVolumeDesolvation(residue, atoms, version, options=None):
"""
calculates the desolvation according to the ScaledRadialVolumeModel
"""
if residue.label == "BKB 50 A":
pka_print("found %s [%6.3lf%6.3lf%6.3lf]!" % (residue.label, residue.x, residue.y, residue.z))
pka_print("buried_cutoff_sqr = %s!" % (version.buried_cutoff_sqr))
pka_print("desolv_cutoff_sqr = %s!" % (version.desolv_cutoff_sqr))
scale_factor = 0.8527*1.36 # temporary weight for printing out contributions
residue.Nlocl = 0
residue.Nmass = 0
residue.Elocl = 0.00
dV = 0.00
volume = 0.00
min_distance_4th = pow(2.75, 4)
for chainID in list(atoms.keys()):
for key in atoms[chainID]["keys"]:
for atom in atoms[chainID][key]:
if atom.element != "H":
if atom.resNumb != residue.resNumb or atom.chainID != residue.chainID:
# selecting atom type
if atom.name in ["C", "CA"]:
atomtype = "C"
elif atom.name in ["N", "NE1", "NE2", "ND1", "ND2", "NZ", "NE", "NH1", "NH2"]:
atomtype = "N"
elif atom.name in ["O", "OD1", "OD2", "OE1", "OE2", "OH", "OG", "OG1", "OXT"]:
atomtype = "O"
elif atom.name in ["S", "SD", "SG"]:
atomtype = "S"
else:
atomtype = "C4"
dV = version.desolvationVolume[atomtype]
# calculating distance (atom - residue)
dX = atom.x - residue.x
dY = atom.y - residue.y
dZ = atom.z - residue.z
distance_sqr = dX*dX + dY*dY + dZ*dZ
if distance_sqr < version.desolv_cutoff_sqr:
dV_inc = dV/max(min_distance_4th, distance_sqr*distance_sqr)
volume += dV_inc
if residue.label in ["ASP 8 a", "ASP 10 a", "GLU 172 a", "ASP 92 a", "GLU 66 a"]:
# test printout
distance = max(2.75, math.sqrt(distance_sqr))
if distance < 20.0:
str = "%6.2lf %8.4lf" % (distance, residue.Q * version.desolvationPrefactor * max(0.00, dV_inc)*scale_factor)
str += " %s" % (atomtype)
#str += " %s" % (residue.label)
pka_print(str)
if distance_sqr < version.buried_cutoff_sqr:
residue.Nmass += 1
residue.Vmass += dV
weight = version.calculateWeight(residue.Nmass)
scale_factor = 1.0 - (1.0 - version.desolvationSurfaceScalingFactor)*(1.0 - weight)
residue.buried = weight
residue.Emass = residue.Q * version.desolvationPrefactor * max(0.00, volume-version.desolvationAllowance) * scale_factor
return 0.00, 0.00, 0.00, 0.00
def contactDesolvation(residue, atoms, version, options=None):
"""
calculates the desolvation according to the Contact Model, the old default
"""
if residue.resName in version.desolvationRadii:
local_cutoff = version.desolvationRadii[residue.resName]
else:
local_cutoff = 0.00
residue.Nmass = 0
residue.Nlocl = 0
for chainID in list(atoms.keys()):
for key in atoms[chainID]["keys"]:
for atom in atoms[chainID][key]:
if atom.element != "H":
if atom.resNumb != residue.resNumb or atom.chainID != residue.chainID:
dX = atom.x - residue.x
dY = atom.y - residue.y
dZ = atom.z - residue.z
distance = math.sqrt(dX*dX + dY*dY + dZ*dZ)
if distance < local_cutoff:
residue.Nlocl += 1
if distance < version.buried_cutoff:
residue.Nmass += 1
if residue.Nmass > 400:
residue.location = "BURIED "
else:
residue.location = "SURFACE"
residue.Emass = residue.Q * version.desolvationPrefactor * max(0.00, residue.Nmass-version.desolvationAllowance)
residue.Elocl = residue.Q * version.desolvationLocal * residue.Nlocl
# Buried ratio - new feature in propka3.0
# Note, there will be an unforseen problem: e.g. if one residue has Nmass > Nmax and
# the other Nmass < Nmax, the Npair will not be Nmass1 + Nmass2!
residue.buried = version.calculateWeight(residue.Nmass)
return 0.00, 0.00, 0.00, 0.00
def originalDesolvation(residue=None, atoms=None, version=None, options=None):
"""
calculates the desolvation according to the Contact Model, the old default
"""
if residue.resName in version.desolvationRadii:
local_cutoff = version.desolvationRadii[residue.resName]
else:
local_cutoff = 0.00
Nlocl_his4 = 0
Nlocl_his6 = 0
residue.Nmass = 0
residue.Nlocl = 0
for chainID in list(atoms.keys()):
for key in atoms[chainID]["keys"]:
for atom in atoms[chainID][key]:
HYDROGEN_ATOM = ( (atom.name[0] == 'H') or (atom.name[0] in string.digits and atom.name[1] == 'H') )
if HYDROGEN_ATOM == False:
if atom.resNumb != residue.resNumb or atom.chainID != residue.chainID:
dX = atom.x - residue.x
dY = atom.y - residue.y
dZ = atom.z - residue.z
distance = math.sqrt(dX*dX + dY*dY + dZ*dZ)
if residue.resName == "HIS":
# special case for HIS
if distance < 4.0:
Nlocl_his4 += 1
if distance < 6.0:
Nlocl_his6 += 1
else:
# everything else
if distance < local_cutoff:
residue.Nlocl += 1
if distance < version.buried_cutoff:
residue.Nmass += 1
if residue.Nmass > 400:
residue.location = "BURIED "
else:
residue.location = "SURFACE"
if residue.resName == "HIS":
if residue.location == "SURFACE":
residue.Nlocl = Nlocl_his4
else:
residue.Nlocl = Nlocl_his6
residue.Emass = residue.Q * version.desolvationPrefactor * max(0.00, residue.Nmass-version.desolvationAllowance)
residue.Elocl = residue.Q * version.desolvationLocal * residue.Nlocl
# Buried ratio - new feature in propka3.0
# Note, there will be an unforseen problem: e.g. if one residue has Nmass > Nmax and
# the other Nmass < Nmax, the Npair will not be Nmass1 + Nmass2!
residue.buried = version.calculateWeight(residue.Nmass)
return 0.00, 0.00, 0.00, 0.00
def BackBoneReorganization(protein):
"""
adding test stuff
"""
residues = []
for resName in ["ASP", "GLU"]:
for residue in protein.residue_dictionary[resName]:
residues.append(residue)
for residue in residues:
weight = residue.buried
dpKa = 0.00
for atom3, atom2 in protein.COlist:
center = [residue.x, residue.y, residue.z]
distance, f_angle, nada = AngleFactorX(atom2=atom2, atom3=atom3, center=center)
if distance < 6.0 and f_angle > 0.001:
value = 1.0-(distance-3.0)/(6.0-3.0)
dpKa += 0.80*min(1.0, value)
residue.Elocl = dpKa*weight
def TmProfile(protein, reference="neutral", grid=[0., 14., 0.1], Tm=None, Tms=None, ref=None, options=None):
"""
Calculates the folding profile
"""
Nres = 0
for chain in protein.chains:
Nres += len(chain.residues)
dS = 0.0173*Nres
pH_ref = 5.0; dG_ref = protein.calculateFoldingEnergy(pH_ref, reference=reference)
if ref == None:
Tm_ref = 0.00
if Tms == None:
Tm_list = [Tm]
else:
Tm_list = Tms
number_of_Tms = float(len(Tm_list))
ave_diff = 1.0
while abs(ave_diff) > 0.005:
ave_diff = 0.00
for pH, Tm in Tm_list:
dG = protein.calculateFoldingEnergy(pH, reference=reference)
dTm = -4.187*(dG - dG_ref)/dS
Tm_calc = Tm_ref+dTm
ave_diff += (Tm_calc - Tm)/number_of_Tms
#Tm_ref -= (Tm_old+dTm - Tm)/(2*number_of_Tms)
Tm_ref -= ave_diff
#pka_print("%6.2lf %6.2lf %6.2lf" % (Tm_ref, ave_diff, Tm_ref - Tm_old))
else:
dTm_ref = -4.187*(dG_ref - ref[2])/dS
Tm_ref = ref[1] + dTm_ref
pka_print("ref = %6.2lf%6.2lf%6.2lf" % (pH_ref, Tm_ref, dG_ref))
profile = []
pH, end, increment = grid
while pH <= end:
dG = protein.calculateFoldingEnergy(pH, reference=reference)
dTm = -4.187*(dG - dG_ref)/dS
profile.append([pH, Tm_ref+dTm])
pH += increment
return profile
def ChargeProfile(protein, options=None):
"""
Calculates the folding profile
"""
profile = []
for i_pH in range(0, 15):
pH = float(i_pH)
Q_pro, Q_mod = protein.calculateCharge(pH)
profile.append([pH, Q_pro, Q_mod])
return profile
def pI(protein, pI=7.0, options=None):
"""
Calculates the iso electric point
"""
pI_pro = pI - 0.50
pI_mod = pI + 0.50
Q1_pro, Q1_mod = protein.calculateCharge(pI_pro)
Q2_pro, Q2_mod = protein.calculateCharge(pI_mod)
iter = 0
while abs(Q1_pro) > 0.005 and abs(Q2_mod) > 0.005:
if iter == 50:
pka_print("pI iterations did not converge after %d iterations %s, switching to bracketing" % (iter, protein.name))
pI_pro, pI_mod = bracketingPI(protein)
break
else:
iter += 1
if abs(pI_pro - pI_mod) < 0.010:
shift_pro = random.random()*0.02 - 0.01
shift_mod = random.random()*0.02 - 0.01
shift = (shift_pro-shift_mod)
pI_pro += shift_pro
pI_mod += shift_mod
Q1_pro, Q1_mod = protein.calculateCharge(pI_pro)
Q2_pro, Q2_mod = protein.calculateCharge(pI_mod)
k1 = (Q1_pro - Q2_pro)/(pI_pro - pI_mod)
k2 = (Q2_mod - Q1_mod)/(pI_mod - pI_pro)
shift = -Q1_pro/k1
if abs(shift) > 4.0:
shift = shift/abs(shift)
pI_pro += shift
shift = -Q2_mod/k2
if abs(shift) > 4.0:
shift = shift/abs(shift)
pI_mod += shift
#pka_print("%4d%8.3lf%8.3lf" % (iter, pI_pro, pI_mod))
#if options.verbose == True:
# pka_print("%10d pI iterations" % (iter))
return pI_pro, pI_mod
def bracketingPI(protein, bracket=[0.0, 14.0]):
"""
Calculates the pI using 'bracketing'
"""
iter = 0
pI = [0., 0.]
Q_min = [0., 0.]; Q_max = [0., 0.]
pI_min = [bracket[0], bracket[0]]; pI_max = [bracket[1], bracket[1]]
Q_min[0], Q_min[1] = protein.calculateCharge( 0.00)
Q_max[0], Q_max[1] = protein.calculateCharge(14.00)
while True:
pI[0] = random.uniform(pI_min[0], pI_max[0])
pI[1] = random.uniform(pI_min[1], pI_max[1])
Q = []
Q.append(protein.calculateCharge(pI[0]))
Q.append(protein.calculateCharge(pI[1]))
# folded structure
if Q[0][0] > 0.00:
pI_min[0] = pI[0]; Q_min[0] = Q[0][0]
else:
pI_max[0] = pI[0]; Q_max[0] = Q[0][0]
if True:
if Q[1][0] > 0.00 and Q[1][0] < Q_min[0]:
pI_min[0] = pI[1]; Q_min[0] = Q[1][0]
elif Q[1][0] < 0.00 and Q[1][0] > Q_max[0]:
pI_max[0] = pI[1]; Q_max[0] = Q[1][0]
# unfolded structure
if Q[1][1] > 0.00:
pI_min[1] = pI[1]; Q_min[1] = Q[1][1]
else:
pI_max[1] = pI[1]; Q_max[1] = Q[1][1]
if True:
if Q[0][1] > 0.00 and Q[0][1] < Q_min[1]:
pI_min[1] = pI[0]; Q_min[1] = Q[0][1]
elif Q[0][1] < 0.00 and Q[0][1] > Q_max[1]:
pI_max[1] = pI[0]; Q_max[1] = Q[0][1]
iter += 1
pka_print("%4d protein = %6.2lf [%6.2lf%6.2lf] [%6.2lf%6.2lf]" % (iter, pI[0], Q_min[0], Q_max[0], pI_min[0], pI_max[0]))
if Q_min[0] < 0.005 and Q_min[1] < 0.005 and \
Q_max[0] > -0.005 and Q_max[1] > -0.005:
break
return pI[0], pI[1]
|