File: chain.py

package info (click to toggle)
pdb2pqr 2.1.1%2Bdfsg-7%2Bdeb11u1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 47,044 kB
  • sloc: python: 44,152; cpp: 9,847; xml: 9,092; sh: 79; makefile: 55; ansic: 36
file content (408 lines) | stat: -rw-r--r-- 15,383 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
#
# * This library is free software; you can redistribute it and/or
# * modify it under the terms of the GNU Lesser General Public
# * License as published by the Free Software Foundation; either
# * version 2.1 of the License, or (at your option) any later version.
# *
# * This library is distributed in the hope that it will be useful,
# * but WITHOUT ANY WARRANTY; without even the implied warranty of
# * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# * Lesser General Public License for more details.
#

#propka3.0, revision 182                                                                      2011-08-09
#-------------------------------------------------------------------------------------------------------
#--                                                                                                   --
#--                                   PROPKA: A PROTEIN PKA PREDICTOR                                 --
#--                                                                                                   --
#--                              VERSION 3.0,  01/01/2011, COPENHAGEN                                 --
#--                              BY MATS H.M. OLSSON AND CHRESTEN R. SONDERGARD                       --
#--                                                                                                   --
#-------------------------------------------------------------------------------------------------------
#
#
#-------------------------------------------------------------------------------------------------------
# References:
#
#   Very Fast Empirical Prediction and Rationalization of Protein pKa Values
#   Hui Li, Andrew D. Robertson and Jan H. Jensen
#   PROTEINS: Structure, Function, and Bioinformatics 61:704-721 (2005)
#
#   Very Fast Prediction and Rationalization of pKa Values for Protein-Ligand Complexes
#   Delphine C. Bas, David M. Rogers and Jan H. Jensen
#   PROTEINS: Structure, Function, and Bioinformatics 73:765-783 (2008)
#
#   PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa predictions
#   Mats H.M. Olsson, Chresten R. Sondergard, Michal Rostkowski, and Jan H. Jensen
#   Journal of Chemical Theory and Computation, 7, 525-537 (2011)
#-------------------------------------------------------------------------------------------------------
import math, sys
from . import lib
pka_print = lib.pka_print
from . import mutate
from .residue import Residue


class Chain:
    """
        Chain class - contains a chain and properties of chain
    """

    def __init__(self, atoms, resInfo=None, options=None):
        """
        Constructer of chain object
        """
        self.chainID        = atoms[ atoms["keys"][0] ][0].chainID
        self.alignment      = None
        self.residues       = []
        self.configurations = []
        self.last_residue   = None

        if options.verbose == True:
          pka_print("constructing chain %c (atoms: configurations)" % (self.chainID))

        # creating the 'residues'
        for key in atoms["keys"]:
          myResidue = Residue(atoms[key], resInfo=resInfo)
          if myResidue.checked():
            self.last_residue = myResidue
            self.residues.append(myResidue)

        # setting up list of configuration keys in this chain
        for residue in self.residues:
          for key in residue.configurations:
            if key not in self.configurations:
              self.configurations.append(key)

        # checking and correcting C-terminus and N-terminus
        self.addNTerminus(resInfo=resInfo)
        self.addCTerminus(resInfo=resInfo)



    def addNTerminus(self, resInfo=None):
        """
        Creating a N-terminus residue for this chain and adding it to 'residues' list
        """
        atom = None
        for residue in self.residues:
          if residue.type == "amino-acid":
            atom = residue.getAtom(name="N")
            break
        if atom != None:
          Nterminus = Residue([atom], resName="N+ ", resInfo=resInfo)
          self.residues.append(Nterminus)


    def addCTerminus(self, resInfo=None):
        """
        Creating a C-terminus residue for this chain and adding it to 'residues' list
        """
        last_residue = None
        for residue in self.residues:
          if residue.type == "amino-acid":
            last_residue = residue
        if last_residue != None:
          atoms = last_residue.checkOXT()
          Cterminus = Residue(atoms, resName="C- ", resInfo=resInfo)
          self.residues.append(Cterminus)


    def fillUnknownConfigurations(self, keys=None, options=None):
        """
        Fills in  the configurations that have not been read
        """
        for residue in self.residues:
          residue.fillUnknownConfigurations(keys=keys, options=options)


    def checkResidues(self, options=None):
        """
        Checks that there are only known residues - I ignore ligands for now
        """
        resNumb = 0
        for residue in self.residues:
            resNumb += 1
            while resNumb < residue.resNumb:
               pka_print("XXX%4d - missing residue" % (resNumb))
               resNumb += 1
            residue.checkResidue(options=options)


    def calculateDesolvation(self, atoms, version=None, options=None):
        """
        Calculates the desolvation for each residue in this chain. Note, 'atoms' contains ALL atoms, not only 
        atoms belonging to this chain. Thus, you will get the desolvation of this chain in the presence of all.
        """
        propka1_list = lib.residueList("propka1")
        for residue in self.residues:
          if   residue.location == "BONDED":
            do_it = False
          elif residue.type     == "ion":
            do_it = True
          elif residue.resName in propka1_list:
            do_it = True
          else:
            do_it = False

          if do_it == True:
              residue.calculateDesolvation(atoms, version=version, options=options)


    def appendToBackBoneLists(self, NHlist, COlist):
        """
        Creates and returns CO-list list for base-backbone interactions
        """
        for residue in self.residues:
            if residue == self.last_residue:
                """ do nothing """
            elif residue.type == "amino-acid":
                N, H, C, O = residue.extractBackBoneAtoms()
                if N == None or H == None:
                  """ do nothing, probably PRO; pka_print("%s missing N-H" % (residue.label)) """
                else:
                  NHlist.append([N, H])
                if C == None or O == None:
                  """ do nothing, no idear what this is; pka_print("%s missing N-H" % (residue.label)) """
                else:
                  COlist.append([C, O])
            else:
                """ do nothing """


    def appendToResidueDictionary(self, residue_dictionary):
        """
        Adds all propka interesting residues for this chain to list.
        """
        # list of residue names that should be included in the dictionary

        for residue in self.residues:
          if   residue.type in ["amino-acid", "N-terminus", "C-terminus"]:
            key = residue.resName
          elif residue.type == "ligand":
            key = "LIG"
          elif residue.type == "ion":
            key = "ION"
          else:
            pka_print("don't know what I have here %s (%s)" % (residue.type, residue.resName))
            continue

          if residue.location != "BONDED":
            if key in residue_dictionary:
              residue_dictionary[key].append(residue)
            else:
              residue_dictionary[key] = [residue]


    def appendPropkaResidues(self, propka_residues):
        """
        Adds all propka interesting residues for this chain to list.
        """
        residue_interaction_list = lib.residueInteractionList("ALL")
        #ligand_interaction_list = version.ions.keys()
        ligand_interaction_list = []
        for residue in self.residues:
            if residue.resName in residue_interaction_list or residue.resName in ligand_interaction_list:
                if residue.location == "BONDED":
                    """ do nothing """
                    #pka_print("%s %s" % (residue.label, residue.type))
                else:
                    propka_residues.append(residue)
                    

    def appendAcidicResidues(self, acidic_residues, pka_residues):
        """
        Creates and returns a list for acid-backbone interactions
        """
        acidic_residue_list = lib.residueList("acids")
        for residue in self.residues:
            if residue.resName in acidic_residue_list:
                if residue.location == "BONDED":
                    """ do nothing """
                else:
                    acidic_residues.append(residue)
                    pka_residues.append(residue)


    def appendBasicResidues(self, basic_residues, pka_residues):
        """
        Creates and returns a list for base-backbone interactions
        """
        basic_residue_list = lib.residueList("bases")
        for residue in self.residues:
            if residue.resName in basic_residue_list:
                basic_residues.append(residue)
                pka_residues.append(residue)


    def calculateTotalPKA(self):
        """
        Calculates the total pKa from pKa_mod and the determinants
        """
        residue_list = lib.residueList("propka1")
        for residue in self.residues:
            if residue.resName in residue_list:
                residue.calculateTotalPKA()


    def setConfiguration(self, key=None):
        """
        set the 'current possition' to a 'configuration'
        """
        #pka_print( "switching to configuration %s (chain)" % (key) )
        for residue in self.residues:
            residue.setConfiguration(key=key)


    def cleanupResidues(self):
        """
        Initializing/cleaning residues from 'old' determinants etc.
        """
        for residue in self.residues:
            residue.cleanupPKA()


    def setChain(self, chainID):
        """
        Sets the chainID to a specific label, 'chainID'
        """
        self.chainID = chainID
        for residue in self.residues:
            residue.setChain(chainID)


    def makeSequence(self, mutation=None):
        """
        creates a sequence from the chain object to be used in Scwrl-mutations
        """
        sequence = ""
        for residue in self.residues:
          if residue.resName in lib.residueList("standard"):
            if   mutation == None:
              code, resName = lib.convertResidueCode(resName=residue.resName)
              sequence += code.lower()
            elif residue.label in mutation:
              new_label = mutation[residue.label]['label']
              code, resName = lib.convertResidueCode(resName=new_label[:3])
              sequence += code.upper()
            else:
              code, resName = lib.convertResidueCode(resName=residue.resName)
              sequence += code.lower()

        return sequence


    def setAlignment(self, alignment=None):
        """
        Sets the alignment information (from self)
        """
        if alignment == None:
          pka_print("setting alignment according to protein")
          self.alignment = ""
          for residue in self.residues:
            if residue.resName != "N+ " and residue.resName != "C- ":
              code, resName = lib.convertResidueCode(resName=residue.resName)
              if code in "ARNDCQEGHILKMFPSTWYV":
                self.alignment += (code)
          pka_print(self.alignment)
          pka_print( len(self.alignment) )
        else:
          self.alignment = alignment


    def shiftResidueNumber(self, shift):
        """
        Shift the residue numbers with 'shift'
        """
        for residue in self.residues:
            residue.shiftResidueNumber(shift)


    def printDeterminants(self):
        """
        prints the resulting pKa values and determinants to stdout
        """
        # Get same order as propka2.0
        residue_list = lib.residueList("propka1")
        for residue_type in residue_list:
          for residue in self.residues:
            if residue.resName == residue_type:
                pka_print("%s" % ( residue.getDeterminantString() ))


    def writeDeterminants(self, file, verbose=True):
        """
        prints the resulting pKa values and determinants to stdout
        """
        # Get same order as propka2.0
        residue_list = lib.residueList("propka1")
        for residue_type in residue_list:
          for residue in self.residues:
            if residue.resName == residue_type:
                str = "%s\n" % ( residue.getDeterminantString() )
                file.write(str)
                if verbose == True:
                  pka_print(str)


    def writeSummary(self, file, verbose=True):
        """
        prints the resulting pKa values in summary form to stdout
        """

        residue_list = lib.residueList("propka1")
        for residue_type in residue_list:
          for residue in self.residues:
            if residue.resName == residue_type:
                str = "%s\n" % ( residue.getSummaryString() )
                file.write(str)
                if verbose == True:
                  pka_print(str)


    def printSummary(self):
        """
        prints the resulting pKa values in summary form to stdout
        """

        residue_list = lib.residueList("propka1")
        for residue_type in residue_list:
          for residue in self.residues:
            if residue.resName == residue_type:
                str = residue.getSummaryString()
                pka_print(str)


    def calculateCharge(self, pH):
        """
        Calculates the total charge of this chain at pH 'pH'
        """
        propka1_residue_labels = lib.residueList("propka1")
        Qpro = 0.00
        Qmod = 0.00
        for residue in self.residues:
          if residue.resName in propka1_residue_labels:
            Qpro += residue.getCharge(pH, "folded")
            Qmod += residue.getCharge(pH, "unfolded")

        return Qpro, Qmod


    def calculateFoldingEnergy(self, pH=None, reference=None, options=None):
        """
        Calculates the folding energy given the correct pKa values; given
        pKa values calculated for the entire protein 'all chains' will give 
        the total folding energy partitioned to chains, not chain folding 
        energies.
        """
        propka1_residue_labels = lib.residueList("propka1")
        dG = 0.00
        for residue in self.residues:
          if residue.resName in propka1_residue_labels:
            ddG = residue.calculateFoldingEnergy(pH=pH, reference=reference, options=options)
            dG += ddG
            #print "%s %6.2lf" % (residue.label, ddG)

        return dG