1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
#!/usr/bin/python
#
# * This library is free software; you can redistribute it and/or
# * modify it under the terms of the GNU Lesser General Public
# * License as published by the Free Software Foundation; either
# * version 2.1 of the License, or (at your option) any later version.
# *
# * This library is distributed in the hope that it will be useful,
# * but WITHOUT ANY WARRANTY; without even the implied warranty of
# * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# * Lesser General Public License for more details.
#
#propka3.0, revision 182 2011-08-09
#-------------------------------------------------------------------------------------------------------
#-- --
#-- PROPKA: A PROTEIN PKA PREDICTOR --
#-- --
#-- VERSION 3.0, 01/01/2011, COPENHAGEN --
#-- BY MATS H.M. OLSSON AND CHRESTEN R. SONDERGARD --
#-- --
#-------------------------------------------------------------------------------------------------------
#
#
#-------------------------------------------------------------------------------------------------------
# References:
#
# Very Fast Empirical Prediction and Rationalization of Protein pKa Values
# Hui Li, Andrew D. Robertson and Jan H. Jensen
# PROTEINS: Structure, Function, and Bioinformatics 61:704-721 (2005)
#
# Very Fast Prediction and Rationalization of pKa Values for Protein-Ligand Complexes
# Delphine C. Bas, David M. Rogers and Jan H. Jensen
# PROTEINS: Structure, Function, and Bioinformatics 73:765-783 (2008)
#
# PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa predictions
# Mats H.M. Olsson, Chresten R. Sondergard, Michal Rostkowski, and Jan H. Jensen
# Journal of Chemical Theory and Computation, 7, 525-537 (2011)
#-------------------------------------------------------------------------------------------------------
import sys
from .lib import residueList, atomList, pka_print
# NOTE:
# The sole purpose of this module it to set up a 'corresponding-atoms-dictionary',
# which is used for the overlap procedure. The first loop sets up all back-bone
# atoms for all residue types and 'CB' for all residue-type pairs not involving GLY.
# The second loop sets all atoms for self-residue overlap, i.e. ASP-ASP, VAL-VAL.
# The final section sets up the remaining residue-pair specific corresponding atoms
# for the side-chain. The resulting dictionary might not be complete, or agree with
# what you expect for the moment; feel free to change it accordingly.
def makeCorrespondingAtomNames():
"""
setting up a dictionary to define 'corresponding atoms' between two residues for 'overlap'
"""
# getting list of all atoms
resNames = residueList("standard")
names = {}
# ----- back-bone & 'CB' section -----
# simplifying the setup by including back-bone and 'CB' with this loop
for resName1 in resNames:
names[resName1] = {}
for resName2 in resNames:
names[resName1][resName2] = [['N', 'N'],
['CA', 'CA'],
['C', 'C'],
['O', 'O']]
if resName1 != "GLY" and resName2 != "GLY":
names[resName1][resName2].append(['CB', 'CB'])
# ----- self-overlap section -----
# setting up all atoms for self-comparison
for resName in resNames:
atmNames = atomList(resName)
for atmName in atmNames:
if atmName not in ['N', 'CA', 'CB', 'C', 'O']:
names[resName][resName].append([atmName, atmName])
# ----- side-chain section -----
# side-chains left to consider (sorted alphabetically):
# ['ARG', 'ASN', 'ASP', 'CYS', 'GLN', 'GLU', 'HIS', 'ILE', 'LEU', 'LYS', 'MET', 'PHE', 'PRO', 'SER', 'THR', 'TRP', 'TYR', 'VAL']
# ARG
# None
# ASN
str1 = "ASN CG"
str2 = "ARG CG"
extendCorrespondingAtomsDictionary(names, str1, str2)
# ASP
str1 = "ASP CG"
str2 = "ARG CG"
extendCorrespondingAtomsDictionary(names, str1, str2)
str1 = "ASP OD1 OD2"
str2 = "ASN OD1 ND2"
extendCorrespondingAtomsDictionary(names, str1, str2)
# CYS
# None
# GLN
str1 = "GLN CG CD"
str2 = "ARG CG CD"
extendCorrespondingAtomsDictionary(names, str1, str2)
str1 = "GLN CG"
str2 = "ASN CG"
extendCorrespondingAtomsDictionary(names, str1, str2)
str1 = "GLN CG"
str2 = "ASP CG"
extendCorrespondingAtomsDictionary(names, str1, str2)
# GLU
# HIS
# ILE
# LEU
# LYS
# MET
# PHE
# PRO
# SER
# THR
# TRP
# TYR
str1 = "TYR CG"
str2 = "LYS CG"
extendCorrespondingAtomsDictionary(names, str1, str2)
# VAL
return names
def extendCorrespondingAtomsDictionary(names, str1, str2):
"""
extends the pairs based on list1 & list2
"""
list1 = str1.split()
list2 = str2.split()
for i in range(1, len(list1)):
names[list1[0]][list2[0]].append([list1[i], list2[i]])
names[list2[0]][list1[0]].append([list2[i], list1[i]])
return None
def main():
"""
Simple check on the corresponding atoms-dictionary
"""
corresponding_atoms = makeCorrespondingAtomNames()
resNames = residueList("standard")
for resName1 in resNames:
for resName2 in resNames:
str = "%s %s \n" % (resName1, resName2)
for i in range(len(corresponding_atoms[resName1][resName2])):
name1, name2 = corresponding_atoms[resName1][resName2][i]
str += " %-3s %-3s" % (name1, name2)
name1, name2 = corresponding_atoms[resName2][resName1][i]
str += "%-5s %-3s %-3s\n" % (" ", name1, name2)
pka_print(str)
if resName1 == resName2:
break
if __name__ == '__main__': main()
|