File: coupled_residues.py

package info (click to toggle)
pdb2pqr 2.1.1%2Bdfsg-7%2Bdeb11u1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 47,044 kB
  • sloc: python: 44,152; cpp: 9,847; xml: 9,092; sh: 79; makefile: 55; ansic: 36
file content (364 lines) | stat: -rw-r--r-- 16,797 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
#
# * This library is free software; you can redistribute it and/or
# * modify it under the terms of the GNU Lesser General Public
# * License as published by the Free Software Foundation; either
# * version 2.1 of the License, or (at your option) any later version.
# *
# * This library is distributed in the hope that it will be useful,
# * but WITHOUT ANY WARRANTY; without even the implied warranty of
# * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# * Lesser General Public License for more details.
#

#propka3.0, revision 182                                                                      2011-08-09
#-------------------------------------------------------------------------------------------------------
#--                                                                                                   --
#--                                   PROPKA: A PROTEIN PKA PREDICTOR                                 --
#--                                                                                                   --
#--                              VERSION 3.0,  01/01/2011, COPENHAGEN                                 --
#--                              BY MATS H.M. OLSSON AND CHRESTEN R. SONDERGARD                       --
#--                                                                                                   --
#-------------------------------------------------------------------------------------------------------
#
#
#-------------------------------------------------------------------------------------------------------
# References:
#
#   Very Fast Empirical Prediction and Rationalization of Protein pKa Values
#   Hui Li, Andrew D. Robertson and Jan H. Jensen
#   PROTEINS: Structure, Function, and Bioinformatics 61:704-721 (2005)
#
#   Very Fast Prediction and Rationalization of pKa Values for Protein-Ligand Complexes
#   Delphine C. Bas, David M. Rogers and Jan H. Jensen
#   PROTEINS: Structure, Function, and Bioinformatics 73:765-783 (2008)
#
#   PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa predictions
#   Mats H.M. Olsson, Chresten R. Sondergard, Michal Rostkowski, and Jan H. Jensen
#   Journal of Chemical Theory and Computation, 7, 525-537 (2011)
#-------------------------------------------------------------------------------------------------------

import math
from .lib import pka_print

max_intrinsic_pKa_diff = 2.0
min_interaction_energy = 0.5

max_free_energy_diff   = 1.0
min_swap_pka_shift     = 1.0
#pH = 7.0
pH = 'variable'
reference = 'neutral'

min_pka =  0.0
max_pka = 10.0

do_intrinsic = False
do_pair_wise = False
do_prot_stat = True

#pkas 0-10 average?
def is_coupled_pairwise(residue1, residue2):
    interaction1 = get_interaction(residue1,residue2)
    interaction2 = get_interaction(residue2,residue1)
    
    interaction_free_pka1 = residue1.pKa_pro - interaction1
    interaction_free_pka2 = residue2.pKa_pro - interaction2
    max_interaction = max(interaction1,interaction2)

    factor_diff_intrinsic_pka = get_pka_diff_factor(interaction_free_pka1, interaction_free_pka2)
    factor_interaction = get_interaction_factor(max_interaction)
    res = factor_diff_intrinsic_pka*factor_interaction

    return (res,interaction_free_pka1,interaction_free_pka2, max_interaction)


def is_coupled_intrinsic_pka(residue1, residue2):
    """ Checks if residue1 and residue2 are coupled """

    # calculate intrinsic pKa's, if not already done
    for residue in [residue1, residue2]:
        if not hasattr(residue, 'intrinsic_pKa'):
            residue.calculateIntrinsicPKA()
        
    # check if intrinsic pKa's are similar
    factor_diff_intrinsic_pka = get_pka_diff_factor(residue1.intrinsic_pKa, residue2.intrinsic_pKa)
    
    #check if residues have electrostatic interaction
    interaction_energy = max(get_interaction(residue1,residue2), get_interaction(residue2,residue1))
    factor_interaction = get_interaction_factor(interaction_energy)

    res = factor_diff_intrinsic_pka * factor_interaction

    return (res, interaction_energy)


def is_coupled_protonation_state_probability(protein, residue1, residue2, options=None):

    interaction_energy = max(get_interaction(residue1,residue2), get_interaction(residue2,residue1))
    if interaction_energy<=min_interaction_energy:
        return {'coupling_factor':-1.0}


    # calculate intrinsic pKa's, if not already done
    for residue in [residue1, residue2]:
        if not hasattr(residue, 'intrinsic_pKa'):
            residue.calculateIntrinsicPKA()
    
    use_pH = pH
    if pH == 'variable':
        use_pH = min(residue1.pKa_pro, residue2.pKa_pro)


    #default_energy = protein.calculateFoldingEnergy(pH=use_pH, reference="neutral")
    default_energy = protein.calculateFoldingEnergy(pH=use_pH, options=options)
    default_pka1 = residue1.pKa_pro
    default_pka2 = residue2.pKa_pro

    # check that pka values are within relevant limits
    if max(default_pka1, default_pka2) < min_pka or min(default_pka1, default_pka2) > max_pka:
        return {'coupling_factor':-1.0}


    # Swap interactions and re-calculate pKa values
    swap_interactions(residue1, residue2,verbose=False)
    residue1.calculateTotalPKA()
    residue2.calculateTotalPKA()

    # store swapped energy and pka's
    swapped_energy = protein.calculateFoldingEnergy(pH=use_pH, options=options)
    swapped_pka1 = residue1.pKa_pro
    swapped_pka2 = residue2.pKa_pro

    pka_shift1 = swapped_pka1 - default_pka1
    pka_shift2 = swapped_pka2 - default_pka2

    # Swap back to original protonation state
    swap_interactions(residue1, residue2,verbose=False)
    residue1.calculateTotalPKA()
    residue2.calculateTotalPKA()
           
    if abs(default_energy - swapped_energy)<=max_free_energy_diff:
        if max(abs(pka_shift1), abs(pka_shift2)) >= min_swap_pka_shift:
            if abs(residue1.intrinsic_pKa - residue2.intrinsic_pKa) <= max_intrinsic_pKa_diff:
                factor = get_free_energy_diff_factor(default_energy, swapped_energy)*\
                    get_pka_diff_factor(residue1.intrinsic_pKa, residue2.intrinsic_pKa)*\
                    get_interaction_factor(interaction_energy)

                return {'coupling_factor':factor,
                        'default_energy':default_energy, 
                        'swapped_energy':swapped_energy, 
                        'interaction_energy':interaction_energy,
                        'swapped_pka1':swapped_pka1, 
                        'swapped_pka2':swapped_pka2,
                        'pka_shift1':pka_shift1,
                        'pka_shift2':pka_shift2,
                        'pH':use_pH}

    return {'coupling_factor':-1.0}


def get_pka_diff_factor(pka1, pka2):
    intrinsic_pka_diff = abs(pka1-pka2)
    res = 0.0
    if intrinsic_pka_diff <= max_intrinsic_pKa_diff:
        res = 1-(intrinsic_pka_diff/max_intrinsic_pKa_diff)**2

    return res

def get_free_energy_diff_factor(energy1, energy2):
    free_energy_diff = abs(energy1-energy2)
    res = 0.0
    if free_energy_diff <= max_free_energy_diff:
        res = 1-(free_energy_diff/max_free_energy_diff)**2
    return res

def get_interaction_factor(interaction_energy):
    res = 0.0
    interaction_energy = abs(interaction_energy)
    if interaction_energy >= min_interaction_energy:
        res = (interaction_energy-min_interaction_energy)/(1.0+interaction_energy-min_interaction_energy)

    return res



    
def identify_coupled_residues(protein, options=None):
    """ Finds coupled residues in protein """

    verbose=options.display_coupled_residues
    
    if True:
        pka_print('')
        pka_print(' Detecting coupled residues')
        pka_print('   Maximum pKa difference:     %4.2f pKa units'%max_intrinsic_pKa_diff)
        pka_print('   Minimum interaction energy: %4.2f pKa units'%min_interaction_energy)
        pka_print('   Maximum free energy diff.:  %4.2f pKa units'%max_free_energy_diff)
        pka_print('   Minimum swap pKa shift:     %4.2f pKa units'%min_swap_pka_shift)
        pka_print('   pH:                         %6s '%str(pH))
        pka_print('   Reference:                  %s'%reference)
        pka_print('   Min pKa:                    %4.2f'%min_pka)
        pka_print('   Max pKa:                    %4.2f'%max_pka)
        pka_print('')

    # make a single list of all residues in the protein
    all_residues = []
    for chain in protein.chains:
        for residue in chain.residues:
            if not residue in protein.residue_dictionary["ION"]:
                all_residues.append(residue)

    # find coupled residues
    for i in range(len(all_residues)):
        for j in range(len(all_residues)):
            if i==j:
                break
            swap = 0
            if do_intrinsic:
                (coupling_factor_intrinsic_pka, interaction_energy ) = is_coupled_intrinsic_pka(all_residues[i],all_residues[j])
                if coupling_factor_intrinsic_pka>0.0: 
                    swap=1
                    pka_print(' %s and %s coupled (intrinsic pKa): %4.2f | intrinsic pkas: %5.2f - %5.2f = %5.2f | int. energy: %4.2f'%(all_residues[i],
                                                                                                                                all_residues[j],
                                                                                                                                coupling_factor_intrinsic_pka,
                                                                                                                                all_residues[i].intrinsic_pKa,
                                                                                                                                all_residues[j].intrinsic_pKa,
                                                                                                                                all_residues[i].intrinsic_pKa-
                                                                                                                                all_residues[j].intrinsic_pKa,
                                                                                                                                interaction_energy))
                
            if do_pair_wise:
                (coupling_factor_pairwise, int_free_pka1, int_free_pka2, interaction_energy) = is_coupled_pairwise(all_residues[i],all_residues[j])
                if coupling_factor_pairwise>0.0:
                    swap=1
                    pka_print(' %s and %s coupled (pair wise)    : %4.2f | int. free pkas: %5.2f - %5.2f = %5.2f | int. energy: %4.2f'%(all_residues[i],
                                                                                                                                all_residues[j],
                                                                                                                                coupling_factor_pairwise,
                                                                                                                                int_free_pka1, int_free_pka2,
                                                                                                                                int_free_pka1- int_free_pka2,
                                                                                                                                interaction_energy))
                
            if do_prot_stat:
                data = is_coupled_protonation_state_probability(protein, all_residues[i], all_residues[j], options=options)
                if data['coupling_factor'] >0.0:
                    swap=1
                    all_residues[i].coupled_residues.append(all_residues[j])
                    all_residues[j].coupled_residues.append(all_residues[i])
                    protein.coupled_residues = True
                    
                    #pka_print('Coupled residue of', all_residues[i],':', all_residues[j])
                    #pka_print('Coupled residue of', all_residues[j],':', all_residues[i])

                    if verbose:
                        pka_print(make_data_to_string(data,all_residues[i],all_residues[j]))
          
            if swap and verbose:
                # swap...
                swap_interactions(all_residues[i],all_residues[j])
                # ...and swap back
                swap_interactions(all_residues[i],all_residues[j], verbose=False)


    return

def make_data_to_string(data, residue1, residue2):
    s = """ %s and %s coupled (prot.state): %5.2f
 Energy levels:       %6.2f, %6.2f  (difference: %6.2f) at pH %6.2f
 Interaction energy:  %6.2f 
 Intrinsic pka's:     %6.2f, %6.2f  (difference: %6.2f)
 Swapped pKa's:       %6.2f, %6.2f  (difference: %6.2f, %6.2f)"""%(residue1,
                                                                   residue2,
                                                                   data['coupling_factor'],
                                                                   data['default_energy'], data['swapped_energy'],
                                                                   data['default_energy'] - data['swapped_energy'],
                                                                   data['pH'],
                                                                   data['interaction_energy'],
                                                                   residue1.intrinsic_pKa,
                                                                   residue2.intrinsic_pKa,
                                                                   residue1.intrinsic_pKa-residue2.intrinsic_pKa,
                                                                   data['swapped_pka1'],
                                                                   data['swapped_pka2'],
                                                                   data['pka_shift1'],
                                                                   data['pka_shift2'])

    return s
                

def get_interaction(residue1, residue2, include_side_chain_hbs = True):
    determinants = residue1.determinants[2]
    if include_side_chain_hbs:
        determinants = residue1.determinants[0] + residue1.determinants[2]

    interaction_energy = 0.0    
    for det in determinants:
        if residue2.label == det.label:
            interaction_energy += det.value

    pka_print(' '.join((str(residue1), str(residue2), str(interaction_energy))))   

    return interaction_energy





def swap_interactions(residue1, residue2, include_side_chain_hbs = True, verbose=True):

    if verbose:
        pka_print(' '+'-'*113)
        tagged_pka_print(' Original|',residue1.getDeterminantString(), [residue1.label, residue2.label])
        tagged_pka_print(' Original|',residue2.getDeterminantString(), [residue1.label, residue2.label])

    # swap the interactions!
    transfer_determinant(residue1.determinants[2], residue2.determinants[2], residue1.label, residue2.label)
    if include_side_chain_hbs:
        transfer_determinant(residue1.determinants[0], residue2.determinants[0], residue1.label, residue2.label)

    #re-calculate pKa values
    residue1.calculateTotalPKA()
    residue2.calculateTotalPKA()

    if verbose:
        tagged_pka_print(' Swapped |',residue1.getDeterminantString(), [residue1.label, residue2.label])
        tagged_pka_print(' Swapped |',residue2.getDeterminantString(), [residue1.label, residue2.label])
        pka_print(' '+'='*113)
        pka_print('')
    return


def transfer_determinant(determinants1, determinants2, label1, label2):
    # find out what to transfer...
    from1to2 = []
    from2to1 = []
    for det in determinants1:
        if det.label == label2:
            from1to2.append(det)

    for det in determinants2:
        if det.label == label1:
            from2to1.append(det)
        
    # ...and transfer it!
    for det in from1to2:
        det.label = label1
        determinants2.append(det)
        determinants1.remove(det)

    for det in from2to1:
        det.label = label2
        determinants1.append(det)
        determinants2.remove(det)

    return



def tagged_pka_print(tag, s, labels):
    s = "%s %s"%(tag,s)
    s = s.replace('\n','\n%s '%tag)
    for label in labels:
        s = s.replace(label, '\033[31m%s\033[30m'%label)
    pka_print(s)
    return