1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
|
#!/usr/bin/python3
#
# * This library is free software; you can redistribute it and/or
# * modify it under the terms of the GNU Lesser General Public
# * License as published by the Free Software Foundation; either
# * version 2.1 of the License, or (at your option) any later version.
# *
# * This library is distributed in the hope that it will be useful,
# * but WITHOUT ANY WARRANTY; without even the implied warranty of
# * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# * Lesser General Public License for more details.
#
#propka3.0, revision 182 2011-08-09
#-------------------------------------------------------------------------------------------------------
#-- --
#-- PROPKA: A PROTEIN PKA PREDICTOR --
#-- --
#-- VERSION 3.0, 01/01/2011, COPENHAGEN --
#-- BY MATS H.M. OLSSON AND CHRESTEN R. SONDERGARD --
#-- --
#-------------------------------------------------------------------------------------------------------
#
#
#-------------------------------------------------------------------------------------------------------
# References:
#
# Very Fast Empirical Prediction and Rationalization of Protein pKa Values
# Hui Li, Andrew D. Robertson and Jan H. Jensen
# PROTEINS: Structure, Function, and Bioinformatics 61:704-721 (2005)
#
# Very Fast Prediction and Rationalization of pKa Values for Protein-Ligand Complexes
# Delphine C. Bas, David M. Rogers and Jan H. Jensen
# PROTEINS: Structure, Function, and Bioinformatics 73:765-783 (2008)
#
# PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa predictions
# Mats H.M. Olsson, Chresten R. Sondergard, Michal Rostkowski, and Jan H. Jensen
# Journal of Chemical Theory and Computation, 7, 525-537 (2011)
#-------------------------------------------------------------------------------------------------------
import sys, pdb, protonate, lib, bonds
from .vector_algebra import *
pka_print = lib.pka_print
all_sybyl_types = [
'C.3', # carbon sp3
'H', # hydrogen
'C.2', # carbon sp2
'H.spc', # hydrogen in Single Point Charge (SPC) water model
'C.1', # carbon sp
'H.t3p', # hydrogen in Transferable intermolecular Potential (TIP3P) water model
'C.ar', # carbon aromatic
'LP', # lone pair
'C.cat', # carbocation (C+) used only in a guadinium group
'Du', # dummy atom
'N.3', # nitrogen sp3
'Du.C', # dummy carbon
'N.2', # nitrogen sp2
'Any', # any atom
'N.1', # nitrogen sp
'Hal', # halogen
'N.ar', # nitrogen aromatic
'Het', # heteroatom = N, O, S, P
'N.am', # nitrogen amide
'Hev', # heavy atom (non hydrogen)
'N.pl3', # nitrogen trigonal planar
'Li', # lithium
'N.4', # nitrogen sp3 positively charged
'Na', # sodium
'O.3', # oxygen sp3
'Mg', # magnesium
'O.2', # oxygen sp2
'Al', # aluminum
'O.co2', # oxygen in carboxylate and phosphate groups
'Si', # silicon
'O.spc', # oxygen in Single Point Charge (SPC) water model
'K', # potassium
'O.t3p', # oxygen in Transferable Intermolecular Potential (TIP3P) water model
'Ca', # calcium
'S.3', # sulfur sp3
'Cr.th', # chromium (tetrahedral)
'S.2', # sulfur sp2
'Cr.oh', # chromium (octahedral)
'S.O', # sulfoxide sulfur
'Mn', # manganese
'S.O2', # sulfone sulfur
'Fe', # iron
'P.3', # phosphorous sp3
'Co.oh', # cobalt (octahedral)
'F', # fluorine
'Cu', # copper
'Cl', # chlorine
'Zn', # zinc
'Br', # bromine
'Se', # selenium
'I', # iodine
'Mo', # molybdenum
'Sn'] # tin
#propka_input_types = ['1P','1N','2P','2N']
#for type in all_sybyl_types:
# temp = type.replace('.','')
# if len(temp)>3:
# temp = temp[0:3]
# propka_input_types.append(temp)
#
#for t in propka_input_types:
# print (t)
propka_input_types = [
'1P',
'1N',
'2P',
'2N',
'C3',
'H',
'C2',
'Hsp',
'C1',
'Ht3',
'Car',
'LP',
'Cca',
'Du',
'N3',
'DuC',
'N2',
'Any',
'N1',
'Hal',
'Nar',
'Het',
'Nam',
'Hev',
'Npl',
'Li',
'N4',
'Na',
'O3',
'Mg',
'O2',
'Al',
'Oco',
'Si',
'Osp',
'K',
'Ot3',
'Ca',
'S3',
'Crt',
'S2',
'Cro',
'SO',
'Mn',
'SO2',
'Fe',
'P3',
'Coo',
'F',
'Cu',
'Cl',
'Zn',
'Br',
'Se',
'I',
'Mo',
'Sn']
ions = ['CA','NA']
max_C_double_bond = 1.3
max_C_triple_bond = 1.2
max_C_double_bond_squared = max_C_double_bond*max_C_double_bond
max_C_triple_bond_squared = max_C_triple_bond*max_C_triple_bond
class ligand:
def __init__(self, atoms):
self.atoms = atoms
for atom in self.atoms:
atom.residue = self
#self.remove_ions()
self.configuration_keys = list(atoms[0].configurations.keys())
# create ligand residue objects
self.ligand_residues = []
self.split_into_residues()
return
def __str__(self):
res = '----Ligand----\n'
for atom in self.atoms:
res += '%s\n'%atom
res+='--------------'
return res
def split_into_residues(self):
residue = []
if len(self.atoms)>0:
current_residue_number = self.atoms[0].resNumb
for atom in self.atoms:
if atom.resNumb != current_residue_number:
self.ligand_residues.append(ligand_residue(residue))
residue = []
current_residue_number = atom.resNumb
residue.append(atom)
# remember to include the last ligand residue
self.ligand_residues.append(ligand_residue(residue))
return
def remove_ions(self):
self.atoms = [atom for atom in self.atoms if atom.get_element() not in ions]
return
def writePDB(self, pdbname):
pka_print("writing pdbfile %s" % (pdbname))
file = open(pdbname, 'w')
configurations = lib.get_sorted_configurations(self.configuration_keys)
if len(configurations)==1:
self.write_atoms(file)
else:
for configuration in configurations:
self.setConfiguration(configuration)
file.write('MODEL%9d\n'%int(configuration[1]))
self.write_atoms(file)
file.write('ENDMDL\n')
file.close()
return
def write_atoms(self,file):
atom_number=1
for atom in my_ligand.atoms:
atom.writePDB(file,atom_number)
atom_number+=1
return
def assign_atom_names(self):
"""
Assigns sybyl names to ligand atoms based on elements and coordinates
copied from propka/ligand.py
modified:
P -> P3
O.co2+ - > O.co2
"""
# find bonding atoms
self.my_bond_maker = bonds.bondmaker()
self.my_bond_maker.find_bonds_for_atoms(self.atoms)
for atom in self.atoms:
# check if we already have assigned a name to this atom
if hasattr(atom, 'sybyl_assigned'):
print((atom.resName, atom.numb, atom.name, 'alreadyassigned'))
continue
# find some properties of the atom
ring_atoms = self.is_ring_member(atom)
aromatic = self.is_aromatic_ring(ring_atoms)
planar = self.is_planar(atom)
bonded_elements = {}
for i in range(len(atom.bonded_atoms)):
bonded_elements[i] = atom.bonded_atoms[i].get_element()
# Aromatic carbon/nitrogen
if aromatic:
#print "--- if aromatic",atom.resName, atom.numb, atom.name, atom.get_element()
#for ra in ring_atoms:
# if ra.get_element() in ['C', 'N']:
# self.set_type(ra, ra.get_element() + '.ar')
#continue
'''SH: In the original version, if a ring is planar (eg., 4FXF_D_FBP_606)
but contains other atoms than C or N the loop breaks without assigning these atoms
'''
if atom.get_element() in ['C', 'N']:
self.set_type(atom, atom.get_element() + '.ar')
continue
# check for amide
if atom.get_element() in ['O', 'N']:
amide = 0
for b in atom.bonded_atoms:
if b.element == 'C':
for bb in b.bonded_atoms:
if (bb.get_element() == 'N' and atom.get_element() == 'O'):
self.set_type(bb, 'N.am')
self.set_type(b, 'C.2')
self.set_type(atom, 'O.2')
amide = 1
if (bb.get_element() == 'O' and atom.get_element() == 'N'):
self.set_type(atom, 'N.am')
self.set_type(b, 'C.2')
self.set_type(bb, 'O.2')
amide = 1
if amide == 1:
continue
if atom.get_element() == 'C':
# check for amide
if 'O' in list(bonded_elements.values()) and 'N' in list(bonded_elements.values()):
self.set_type(atom, 'C.2')
for b in atom.bonded_atoms:
if b.get_element() == 'N':
self.set_type(b, 'N.am')
if b.get_element() == 'O':
self.set_type(b, 'O.2')
continue
# check for carboxyl
if len(atom.bonded_atoms) == 3 and list(bonded_elements.values()).count('O') == 2:
i1 = list(bonded_elements.values()).index('O')
i2 = list(bonded_elements.values()).index('O', i1 + 1)
if len(atom.bonded_atoms[i1].bonded_atoms) == 1 and len(atom.bonded_atoms[i2].bonded_atoms) == 1:
#self.set_type(atom.bonded_atoms[i1], 'O.co2+')
self.set_type(atom.bonded_atoms[i1], 'O.co2') #SH: problems in 1a3w
self.set_type(atom.bonded_atoms[i2], 'O.co2')
self.set_type(atom, 'C.2')
continue
# sp carbon
if len(atom.bonded_atoms) <= 2:
for b in atom.bonded_atoms:
if self.my_bond_maker.squared_distance(atom, b) < max_C_triple_bond_squared:
self.set_type(atom, 'C.1')
self.set_type(b, b.get_element() + '.1')
if hasattr(atom, 'sybyl_assigned'):
continue
# sp2 carbon
if planar:
self.set_type(atom, 'C.2')
# check for N.pl3
for b in atom.bonded_atoms:
if b.get_element() == 'N':
if len(b.bonded_atoms) < 3 or self.is_planar(b):
self.set_type(b, 'N.pl3')
continue
# sp3 carbon
self.set_type(atom, 'C.3')
continue
# Nitrogen
if atom.get_element() == 'N':
# check for planar N
if len(atom.bonded_atoms) == 1:
if self.is_planar(atom.bonded_atoms[0]):
self.set_type(atom, 'N.pl3')
continue
if planar:
self.set_type(atom, 'N.pl3')
continue
self.set_type(atom, 'N.3')
continue
# Oxygen
if atom.get_element() == 'O':
self.set_type(atom, 'O.3')
# check for X=O
if len(atom.bonded_atoms) == 1:
if self.my_bond_maker.squared_distance(atom, atom.bonded_atoms[0]) < max_C_double_bond_squared:
self.set_type(atom, 'O.2')
if atom.bonded_atoms[0].get_element() == 'C':
self.set_type(atom.bonded_atoms[0], 'C.2')
continue
# Sulphur
if atom.get_element() == 'S':
#check for SO2
if list(bonded_elements.values()).count('O') == 2:
i1 = list(bonded_elements.values()).index('O')
i2 = list(bonded_elements.values()).index('O', i1 + 1)
self.set_type(atom.bonded_atoms[i1], 'O.2')
self.set_type(atom.bonded_atoms[i2], 'O.2')
self.set_type(atom, 'S.o2')
continue
# check for SO4
if list(bonded_elements.values()).count('O') == 4:
no_O2 = 0
for i in range(len(atom.bonded_atoms)):
if len(atom.bonded_atoms[i].bonded_atoms) == 1 and no_O2 < 2:
self.set_type(atom.bonded_atoms[i], 'O.2')
no_O2 += 1
else:
self.set_type(atom.bonded_atoms[i], 'O.3')
self.set_type(atom, 'S.3')
continue
# Phosphorous (phosphorous sp3)
#@attention: This was added and may not consider all types of phosphorous
if atom.get_element() == 'P':
self.set_type(atom, 'P.3')
continue
element = atom.get_element().capitalize()
self.set_type(atom, element)
#pka_print('Using element as type for %s'%atom.get_element())
return
def set_type(self,atom,type):
pka_print(atom,'->',type)
atom.name = type
atom.sybyl_assigned=1
return
def is_ring_member(self, atom):
return self.identify_ring(atom,atom,0,[])
def identify_ring(self, this_atom, original_atom, number, past_atoms):
number+=1
past_atoms=past_atoms+[this_atom]
return_atoms = []
for atom in this_atom.bonded_atoms:
if atom == original_atom and number>2:
return past_atoms
if atom not in past_atoms:
these_return_atoms = self.identify_ring(atom, original_atom, number, past_atoms)
if len(these_return_atoms) > 0:
if len(return_atoms)>len(these_return_atoms) or len(return_atoms)==0:
return_atoms = these_return_atoms
return return_atoms
def is_planar(self, atom):
""" Finds out if atom forms a plane together with its bonded atoms"""
atoms = [atom]+atom.bonded_atoms
return self.are_atoms_planar(atoms)
def are_atoms_planar(self, atoms):
if len(atoms)==0:
return False
if len(atoms)<4:
return False
v1 = vector(atom1=atoms[0], atom2=atoms[1])
v2 = vector(atom1=atoms[0], atom2=atoms[2])
n = (v1**v2).rescale(1.0)
margin = 0.20
for b in atoms[3:]:
v = vector(atom1=atoms[0], atom2=b).rescale(1.0)
#pka_print(atoms[0],abs(v*n) )
if abs(v*n)>margin:
return False
return True
def is_aromatic_ring(self, atoms):
if len(atoms)<5:
return False
for i in range(len(atoms)):
if not self.are_atoms_planar(atoms[i:]+atoms[:i]):
return False
return True
class ligand_residue:
def __init__(self, atoms):
self.resNumb = -1
self.resName = ''
self.atoms = atoms
if len(self.atoms)>0:
self.resNumb = self.atoms[0].resNumb
self.resName = self.atoms[0].resName
pka_print('Created ligand residue %s with %2d atoms'%(self, len(self.atoms)))
return
def __str__(self):
return '%s-%4d'%(self.resName,self.resNumb)
if __name__ == '__main__':
if len(sys.argv)<2:
sys.exit(0)
protonator = protonate.Protonate()
pka_print(sys.argv[1])
atoms = pdb.readPDB(sys.argv[1],tags=["ATOM","HETATM"])
my_ligand = ligand(atoms)
#assign sybyl names
protonator.remove_all_hydrogen_atoms_from_ligand(my_ligand)
my_ligand.assign_atom_names()
my_ligand.writePDB('before_ligand_protonation.pdb')
#convert to propka input names
# for atom in my_ligand.atoms:
# temp = atom.name
# temp = temp.replace('.','')
# if len(temp)>3:
# temp = temp[0:3]
# atom.name = temp
# protonate
protonator.protonate_ligand(my_ligand)
my_ligand.writePDB('after_ligand_protonation.pdb')
|