1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
|
#!/usr/bin/python3
#
# * This library is free software; you can redistribute it and/or
# * modify it under the terms of the GNU Lesser General Public
# * License as published by the Free Software Foundation; either
# * version 2.1 of the License, or (at your option) any later version.
# *
# * This library is distributed in the hope that it will be useful,
# * but WITHOUT ANY WARRANTY; without even the implied warranty of
# * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# * Lesser General Public License for more details.
#
#propka3.0, revision 182 2011-08-09
#-------------------------------------------------------------------------------------------------------
#-- --
#-- PROPKA: A PROTEIN PKA PREDICTOR --
#-- --
#-- VERSION 3.0, 01/01/2011, COPENHAGEN --
#-- BY MATS H.M. OLSSON AND CHRESTEN R. SONDERGARD --
#-- --
#-------------------------------------------------------------------------------------------------------
#
#
#-------------------------------------------------------------------------------------------------------
# References:
#
# Very Fast Empirical Prediction and Rationalization of Protein pKa Values
# Hui Li, Andrew D. Robertson and Jan H. Jensen
# PROTEINS: Structure, Function, and Bioinformatics 61:704-721 (2005)
#
# Very Fast Prediction and Rationalization of pKa Values for Protein-Ligand Complexes
# Delphine C. Bas, David M. Rogers and Jan H. Jensen
# PROTEINS: Structure, Function, and Bioinformatics 73:765-783 (2008)
#
# PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa predictions
# Mats H.M. Olsson, Chresten R. Sondergard, Michal Rostkowski, and Jan H. Jensen
# Journal of Chemical Theory and Computation, 7, 525-537 (2011)
#-------------------------------------------------------------------------------------------------------
import sys, math
from .vector_algebra import *
from . import bonds as bonds
from . import pdb as pdb
from .lib import pka_print
def makeProtonator(scheme=None):
"""
selects a protonator class based on 'scheme'
"""
if scheme in ["old-school", "old"]:
return old_scheme()
else:
return new_scheme()
class old_scheme:
"""
Protonates a protein using the old propka2-scheme
"""
def __init__(self, atoms=None, pdbfile=None, name=None, options=None):
"""
constructer of the protein object.
"""
self.name = "old-school protonator"
self.protonate_residues = ['ASN', 'GLN', 'TRP', 'HIS', 'ARG']
return
def protonate(self, protein=None):
"""
protonate a given protein
"""
C = None; O = None
for chain in protein.chains:
C = None; O = None
for residue in chain.residues:
if residue.type == "amino-acid":
C, O = self.protonateBackBone(residue, C, O)
if residue.resType == "AMD":
self.protonateAMD(residue)
elif residue.resType == "TRP":
self.protonateTRP(residue)
elif residue.resType == "HIS":
self.protonateHIS(residue)
elif residue.resType == "ARG":
self.protonateARG(residue)
elif residue.resName in self.protonate_residues:
pka_print("no protocol to protonate '%s' in 'old-scheme'" % (residue.label))
sys.exit(8)
return
def protonateBackBone(self, residue, C, O):
"""
Protonates an atom, X1, given a direction (X2 -> X3) [X1, X2, X3]
"""
N = residue.getAtom(name='N')
if C == None and O == None:
""" do nothing, first residue """
elif N == None:
pka_print( "could not find N atom in '%s' (protonateBackBone())" % (residue.label) ); sys.exit(9)
elif residue.resName == "PRO":
""" do nothing, proline doesn't have a proton """
else:
H = self.protonateDirection(atoms=[N, O, C])
residue.atoms.append(H)
return residue.getAtom(name='C'), residue.getAtom(name='O')
def protonateAMD(self, residue):
"""
Protonates the side-chain of 'ASN' and 'GLN'
"""
if residue.resName == "ASN":
C = residue.getAtom(name='CG')
O = residue.getAtom(name='OD1')
N = residue.getAtom(name='ND2')
H1 = self.protonateDirection(name='1HD2', atoms=[N, O, C])
H2 = self.protonateAverageDirection(name='2HD2', atoms=[N, C, O])
elif residue.resName == "GLN":
C = residue.getAtom(name='CD')
O = residue.getAtom(name='OE1')
N = residue.getAtom(name='NE2')
H1 = self.protonateDirection(name='1HE2', atoms=[N, O, C])
H2 = self.protonateAverageDirection(name='2HE2', atoms=[N, C, O])
residue.atoms.extend([H1, H2])
return
def protonateTRP(self, residue):
"""
Protonates the side-chain of 'TRP'
"""
CD = residue.getAtom(name='CD1')
NE = residue.getAtom(name='NE1')
CE = residue.getAtom(name='CE2')
HE = self.protonateSP2(name='HE1', atoms=[CD, NE, CE])
residue.atoms.append(HE)
return
def protonateHIS(self, residue):
"""
Protonates the side-chain of 'HIS'
"""
CG = residue.getAtom(name='CG')
ND = residue.getAtom(name='ND1')
CD = residue.getAtom(name='CD2')
CE = residue.getAtom(name='CE1')
NE = residue.getAtom(name='NE2')
HD = self.protonateSP2(name='HD1', atoms=[CG, ND, CE])
HE = self.protonateSP2(name='HE2', atoms=[CD, NE, CE])
residue.atoms.extend([HD, HE])
return
def protonateARG(self, residue):
"""
Protonates the side-chain of 'ARG'
"""
CD = residue.getAtom(name='CD')
CZ = residue.getAtom(name='CZ')
NE = residue.getAtom(name='NE')
NH1 = residue.getAtom(name='NH1')
NH2 = residue.getAtom(name='NH2')
H1 = self.protonateSP2(name='HE', atoms=[CD, NE, CZ])
H2 = self.protonateDirection(name='1HH1', atoms=[NH1, NE, CZ])
H3 = self.protonateDirection(name='2HH1', atoms=[NH1, NE, CD])
H4 = self.protonateDirection(name='1HH2', atoms=[NH2, NE, CZ])
H5 = self.protonateDirection(name='2HH2', atoms=[NH2, NE, H1])
residue.atoms.extend([H1, H2, H3, H4, H5])
return
def protonateDirection(self, name="H", atoms=None):
"""
Protonates an atom, X1, given a direction (X2 -> X3) [X1, X2, X3]
"""
X1, X2, X3 = atoms
H = X1.makeCopy(name=name, element='H')
for key in list(H.configurations.keys()):
for atom in [H, X1, X2, X3]:
atom.setConfiguration(key)
dX = (X3.x - X2.x)
dY = (X3.y - X2.y)
dZ = (X3.z - X2.z)
length = math.sqrt( dX*dX + dY*dY + dZ*dZ )
H.x += dX/length
H.y += dY/length
H.z += dZ/length
H.setConfigurationPosition(key)
return H
def protonateAverageDirection(self, name="H", atoms=None):
"""
Protonates an atom, X1, given a direction (X1/X2 -> X3) [X1, X2, X3]
Note, this one uses the average of X1 & X2 (N & O) unlike the previous
N - C = O
"""
X1, X2, X3 = atoms
H = X1.makeCopy(name=name, element='H')
for key in list(H.configurations.keys()):
for atom in [H, X1, X2, X3]:
atom.setConfiguration(key)
dX = (X3.x + X1.x)*0.5 - X2.x
dY = (X3.y + X1.y)*0.5 - X2.y
dZ = (X3.z + X1.z)*0.5 - X2.z
length = math.sqrt( dX*dX + dY*dY + dZ*dZ )
H.x += dX/length
H.y += dY/length
H.z += dZ/length
H.setConfigurationPosition(key)
return H
def protonateSP2(self, name="H", atoms=None):
"""
Protonates a SP2 atom, H2, given a list of [X1, X2, X3]
X1-X2-X3
"""
X1, X2, X3 = atoms
H = X2.makeCopy(name=name, element='H')
for key in list(H.configurations.keys()):
for atom in [H, X1, X2, X3]:
atom.setConfiguration(key)
dX = (X1.x + X3.x)*0.5 - X2.x
dY = (X1.y + X3.y)*0.5 - X2.y
dZ = (X1.z + X3.z)*0.5 - X2.z
length = math.sqrt( dX*dX + dY*dY + dZ*dZ )
H.x -= dX/length
H.y -= dY/length
H.z -= dZ/length
H.setConfigurationPosition(key)
return H
class new_scheme:
"""
Protonate atoms according to VSEPR theory
"""
def __init__(self):
self.name = "new-school protonator"
self.valence_electrons = {'H':1,
'C':4,
'N':5,
'O':6,
'F':7,
'P':5,
'S':6,
'CL':7}
self.standard_charges= {'ARG-NH1':1.0,
'ASP-OD2':-1.0,
'GLU-OE2':-1.0,
'HIS-NE2':0.0,
'LYS-NZ':1.0,
'NTERM':1.0,
'CTERM':-1.0}
self.sybyl_charges = {'N.pl3':+1,
'N.3':+1,
'N.4':+1,
'N.ar':+1,
'O.co2+':-1}
# self.standard_conjugate_charges= {'ARG-NH1':1.0}
self.bond_lengths = {'C':1.09,
'N':1.01,
'O':0.96,
'F':0.92,
'Cl':1.27,
'Br':1.41,
'I':1.61}
self.ions = ['NA','CA']
# protonation_methods[steric_number] = method
self.protonation_methods = {4:self.tetrahedral,
3:self.trigonal}
self.my_bond_maker = bonds.bondmaker()
return
def protonate(self, protein=None):
"""
protonate a given protein
"""
self.protonate_protein(protein)
return
def protonate_protein(self, protein):
""" Will protonate all atoms in the protein """
#pka_print('----- Protontion started -----')
# Remove all currently present hydrogen atoms
#self.remove_all_hydrogen_atoms_from_protein(protein)
# make bonds
self.my_bond_maker.find_bonds_for_protein(protein)
# set charges
self.set_charges(protein)
# protonate all atom
non_H_atoms = []
for chain in protein.chains:
for residue in chain.residues:
if residue.type == 'amino-acid':
for atom in residue.atoms:
non_H_atoms.append(atom)
for atom in non_H_atoms:
self.protonate_atom(atom)
# set correct hydrogen names
self.set_proton_names(non_H_atoms)
return
def protonate_ligand(self, ligand):
""" Will protonate all atoms in the ligand """
#pka_print('----- Protonation started -----')
# Remove all currently present hydrogen atoms
self.remove_all_hydrogen_atoms_from_ligand(ligand)
pka_print(ligand)
# make bonds
self.my_bond_maker.find_bonds_for_ligand(ligand)
# set charges
self.set_ligand_charges(ligand)
# protonate all atoms
atoms = []
for atom in ligand.atoms:
if atom.type == 'atom':
atoms.append(atom)
for atom in atoms:
self.protonate_atom(atom)
# fix hydrogen names
self.set_proton_names(ligand.atoms)
return
def remove_all_hydrogen_atoms_from_protein(self, protein):
for chain in protein.chains:
for residue in chain.residues:
residue.atoms = [atom for atom in residue.atoms if atom.get_element() != 'H']
return
def remove_all_hydrogen_atoms_from_ligand(self, ligand):
ligand.atoms = [atom for atom in ligand.atoms if atom.get_element() != 'H']
return
def set_ligand_charges(self, ligand, standard_protonation_states = 1):
if standard_protonation_states:
for atom in ligand.atoms:
#pka_print('Charge before', atom, atom.charge)
if atom.name in list(self.sybyl_charges.keys()):
atom.charge = self.sybyl_charges[atom.name]
#pka_print('Charge', atom, atom.charge)
else:
pka_print('Custom protonation state choosen - don\'t know what to do')
return
def set_charges(self, protein, standard_protonation_states = 1):
if standard_protonation_states:
# set side chain charges
for chain in protein.chains:
for residue in chain.residues:
for atom in residue.atoms:
key = '%3s-%s'%(atom.resName, atom.name)
if key in list(self.standard_charges.keys()):
atom.charge = self.standard_charges[key]
#pka_print('Charge', atom, atom.charge)
# set n-terminal charges
for chain in protein.chains:
for residue in chain.residues:
if residue.resName.replace(' ','') == 'N+':
for atom in residue.atoms:
if atom.name == 'N':
atom.charge = self.standard_charges['NTERM']
#pka_print('Charge', atom, atom.charge)
# set c-terminal charges
for chain in protein.chains:
for residue in chain.residues:
if residue.resName.replace(' ','') == 'C-':
for atom in residue.atoms:
if atom.name in self.my_bond_maker.terminal_oxygen_names:
atom.charge = self.standard_charges['CTERM']
#pka_print('Charge', atom, atom.charge)
else:
pka_print('Custom protonation state choosen - don\'t know what to do')
return
def protonate_atom(self, atom):
self.set_number_of_protons_to_add(atom)
self.set_steric_number_and_lone_pairs(atom)
self.add_protons(atom)
return
def set_proton_names(self, heavy_atoms):
"""
setting an official pdb atom name
"""
for heavy_atom in heavy_atoms:
# counting connected hydrogen atoms
hydrogens = 0; i = 0
for bonded in heavy_atom.bonded_atoms:
if bonded.element == 'H':
hydrogens += 1
for bonded in heavy_atom.bonded_atoms:
if bonded.element == 'H':
name = ""
if hydrogens > 1:
i += 1
name += "%d" % (i)
name += "H"
name += heavy_atom.name[1:]
bonded.setProperty(name=name)
return
def set_number_of_protons_to_add(self, atom):
#pka_print('*'*10)
#pka_print('Setting number of protons to add for',atom)
atom.number_of_protons_to_add = 8
#pka_print(' %4d'%8)
atom.number_of_protons_to_add -= self.valence_electrons[atom.get_element()]
#pka_print('Valence eletrons: %4d'%-self.valence_electrons[atom.get_element()])
atom.number_of_protons_to_add -= len(atom.bonded_atoms)
#pka_print('Number of bonds: %4d'%- len(atom.bonded_atoms))
atom.number_of_protons_to_add -= atom.number_of_pi_electrons_in_double_and_triple_bonds
#pka_print('Pi electrons: %4d'%-atom.number_of_pi_electrons_in_double_and_triple_bonds)
atom.number_of_protons_to_add += int(atom.charge)
#pka_print('Charge: %4.1f'%atom.charge)
#pka_print('-'*10)
#pka_print(atom.number_of_protons_to_add)
return
def set_steric_number_and_lone_pairs(self, atom):
#pka_print('='*10)
#pka_print('Setting steric number and lone pairs for',atom)
# costumly set the N backbone atoms up for peptide bond trigonal planer shape
#if atom.name == 'N' and len(atom.bonded_atoms) == 2:
# atom.steric_number = 3
# atom.number_of_lone_pairs = 0
# print 'Peptide bond: steric number is %d and number of lone pairs is %s'%(atom.steric_number,
# atom.number_of_lone_pairs)
# return
atom.steric_number = 0
#pka_print('%65s: %4d'%('Valence electrons',self.valence_electrons[atom.get_element()]))
atom.steric_number += self.valence_electrons[atom.get_element()]
#pka_print('%65s: %4d'%('Number of bonds',len(atom.bonded_atoms)))
atom.steric_number += len(atom.bonded_atoms)
#pka_print('%65s: %4d'%('Number of hydrogen atoms to add',atom.number_of_protons_to_add))
atom.steric_number += atom.number_of_protons_to_add
#pka_print('%65s: %4d'%('Number of pi-electrons in double and triple bonds(-)',atom.number_of_pi_electrons_in_double_and_triple_bonds))
atom.steric_number -= atom.number_of_pi_electrons_in_double_and_triple_bonds
#pka_print('%65s: %4d'%('Number of pi-electrons in conjugated double and triple bonds(-)',atom.number_of_pi_electrons_in_conjugate_double_and_triple_bonds))
atom.steric_number -= atom.number_of_pi_electrons_in_conjugate_double_and_triple_bonds
#pka_print('%65s: %4d'%('Number of donated co-ordinated bonds',0))
atom.steric_number += 0
#pka_print('%65s: %4.1f'%('Charge(-)',atom.charge))
atom.steric_number -= atom.charge
atom.steric_number = math.floor(atom.steric_number/2.0)
atom.number_of_lone_pairs = atom.steric_number - len(atom.bonded_atoms) - atom.number_of_protons_to_add
#pka_print('-'*70)
#pka_print('%65s: %4d'%('Steric number',atom.steric_number))
#pka_print('%65s: %4d'%('Number of lone pairs',atom.number_of_lone_pairs))
return
def add_protons(self, atom):
# decide which method to use
#pka_print('PROTONATING',atom)
if atom.steric_number in list(self.protonation_methods.keys()):
self.protonation_methods[atom.steric_number](atom)
else:
pka_print('Warning: Do not have a method for protonating',atom,'(steric number: %d)'%atom.steric_number)
return
def trigonal(self, atom):
#pka_print('TRIGONAL - %d bonded atoms'%(len(atom.bonded_atoms)))
rot_angle = math.radians(120.0)
c = multi_vector(atom1 = atom)
# 0 bonds
if len(atom.bonded_atoms) == 0:
pass
# 1 bond
if len(atom.bonded_atoms) == 1 and atom.number_of_protons_to_add > 0:
# Add another atom with the right angle to the first one
a = multi_vector(atom1 = atom, atom2 = atom.bonded_atoms[0])
# use plane of bonded trigonal atom - e.g. arg
if atom.bonded_atoms[0].steric_number == 3 and len(atom.bonded_atoms[0].bonded_atoms)>1:
# use other atoms bonded to the neighbour to establish the plane, if possible
other_atom_indices = []
for i in range(len(atom.bonded_atoms[0].bonded_atoms)):
if atom.bonded_atoms[0].bonded_atoms[i] != atom:
other_atom_indices.append(i)
if len(other_atom_indices)<2:
other_atom_indices = [0,1]
axis = multi_vector(atom1 = atom.bonded_atoms[0],
atom2 = atom.bonded_atoms[0].bonded_atoms[other_atom_indices[0]]
)**multi_vector(atom1 = atom.bonded_atoms[0],
atom2 = atom.bonded_atoms[0].bonded_atoms[other_atom_indices[1]])
else:
axis = a.orthogonal()
a = rotate_multi_vector_around_an_axis(rot_angle, axis, a)
a = self.set_bond_distance(a, atom.get_element())
self.add_proton(atom, c+a)
# 2 bonds
if len(atom.bonded_atoms) == 2 and atom.number_of_protons_to_add > 0:
# Add another atom with the right angle to the first two
a = multi_vector(atom1 = atom, atom2 = atom.bonded_atoms[1])
b = multi_vector(atom1 = atom, atom2 = atom.bonded_atoms[0])
axis = b**a
new_a = rotate_multi_vector_around_an_axis(rot_angle, axis, a)
new_a = self.set_bond_distance(new_a, atom.get_element())
self.add_proton(atom, c+new_a)
return
def tetrahedral(self, atom):
#pka_print('TETRAHEDRAL - %d bonded atoms'%(len(atom.bonded_atoms)))
rot_angle = math.radians(109.5)
# sanity check
# if atom.number_of_protons_to_add + len(atom.bonded_atoms) != 4:
# print 'Error: Attempting tetrahedral structure with %d bonds'%(atom.number_of_protons_to_add +
# len(atom.bonded_atoms))
c = multi_vector(atom1 = atom)
# 0 bonds
if len(atom.bonded_atoms) == 0:
pass
# 1 bond
if len(atom.bonded_atoms) == 1 and atom.number_of_protons_to_add > 0:
# Add another atom with the right angle to the first one
a = multi_vector(atom1 = atom, atom2 = atom.bonded_atoms[0])
axis = a.orthogonal()
a = rotate_multi_vector_around_an_axis(rot_angle, axis, a)
a = self.set_bond_distance(a, atom.get_element())
self.add_proton(atom, c+a)
# 2 bonds
if len(atom.bonded_atoms) == 2 and atom.number_of_protons_to_add > 0:
# Add another atom with the right angle to the first two
a = multi_vector(atom1 = atom, atom2 = atom.bonded_atoms[1])
axis = multi_vector(atom1 = atom.bonded_atoms[0],atom2 = atom)
new_a = rotate_multi_vector_around_an_axis(math.radians(120), axis, a)
new_a = self.set_bond_distance(new_a, atom.get_element())
self.add_proton(atom, c+new_a)
# 3 bonds
if len(atom.bonded_atoms) == 3 and atom.number_of_protons_to_add > 0:
a = multi_vector(atom1 = atom, atom2 = atom.bonded_atoms[2])
axis = multi_vector(atom1 = atom.bonded_atoms[0],atom2 = atom)
b = multi_vector(atom1 = atom, atom2 = atom.bonded_atoms[1])
cross = b**axis
angle = math.radians(120)
if angle_degrees(cross.vectors[0],a.vectors[0]) < 90:
angle = -angle
new_a = rotate_multi_vector_around_an_axis(angle, axis, a)
new_a = self.set_bond_distance(new_a, atom.get_element())
self.add_proton(atom, c+new_a)
return
def add_proton(self, atom, position):
residue = atom.residue
#pka_print(residue)
# Create the new proton
new_H = pdb.Atom()
new_H.setProperty(numb = None,
name = 'H',
resName = atom.resName,
chainID = atom.chainID,
resNumb = atom.resNumb,
x = None,
y = None,
z = None,
occ = None,
beta = None,
element = 'H')
#pka_print(position)
# set all the configurations
for i in range(len(position.keys)):
#print ('adding',position.keys[i],position.vectors[i])
new_H.configurations[position.keys[i]] = [position.vectors[i].x,
position.vectors[i].y,
position.vectors[i].z]
new_H.setConfiguration(position.keys[0])
new_H.bonded_atoms = []
new_H.charge = 0
new_H.steric_number = 0
new_H.number_of_lone_pairs = 0
new_H.number_of_protons_to_add = 0
new_H.number_of_pi_electrons_in_double_and_triple_bonds = 0
residue.atoms.append(new_H)
atom.bonded_atoms.append(new_H)
atom.number_of_protons_to_add -=1
#pka_print('added',new_H, 'to',atom)
return
def set_bond_distance(self, a, element):
d = 1.0
if element in list(self.bond_lengths.keys()):
d = self.bond_lengths[element]
else:
pka_print('WARNING: Bond length for %s not found, using the standard value of %f'%(element, d))
a = a.rescale(d)
return a
if __name__ == '__main__':
import protein, pdb, sys,os
arguments = sys.argv
if len(arguments) != 2:
pka_print('Usage: protonate.py <pdb_file>')
sys.exit(0)
filename = arguments[1]
if not os.path.isfile(filename):
pka_print('Error: Could not find \"%s\"'%filename)
sys.exit(1)
p = Protonate()
pdblist = pdb.readPDB(filename)
my_protein = protein.Protein(pdblist,'test.pdb')
p.remove_all_hydrogen_atoms_from_protein(my_protein)
my_protein.writePDB('before_protonation.pdb')
p.protonate_protein(my_protein)
## write out protonated file
my_protein.writePDB('protonated.pdb')
|