File: userguide.html

package info (click to toggle)
pdb2pqr 2.1.1%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 44,396 kB
  • ctags: 8,475
  • sloc: python: 44,146; cpp: 9,839; xml: 9,092; sh: 108; makefile: 50; ansic: 36
file content (778 lines) | stat: -rw-r--r-- 35,973 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN">
<html>
	<head>
		<title>
			PDB2PQR User Guide
		</title>
		<link rel="stylesheet" href="http://agave.wustl.edu/css/baker.css" type="text/css">
	</head>
	<body>
		<h2>
			PDB2PQR User Guide
		</h2>
		<hr>
		<h3>
			Table of Contents
		</h3>
		<ul>
			<li>
				<a href="#introduction">Introduction</a>
			</li>
			<li>
				<a href="#availability">Availability</a>
			</li>
			<li>
				<a href="#installation">Source Installation</a>
			</li>
			<li>
				<a href="#using">Using PDB2PQR</a>
			</li>
			<li>
				<a href="#algorithm">Algorithm Descriptions</a>
			</li>
			<li>
				<a href="#limitations">Limitations</a>
			</li>
			<li>
				<a href="#faq">Frequently Asked Questions</a>
			</li>
			<li>
				<a href="#bug">Bug Reports and Suggestions</a>
			</li>
			<li>
				<a href="#bib">References and Further Reading</a>
			</li>
		</ul>
		<hr>
		<p>
			<a name="introduction" id="introduction"></a>
		</p>
		<h3>
			Introduction
		</h3>
		<p>
			Background information on PDB2PQR, including citation information, financial support, and availability, can be found at the PDB2PQR homepage (<a href="http://pdb2pqr.sourceforge.net/">http://pdb2pqr.sourceforge.net/</a>).
		</p>
		<p>
			PDB2PQR was written by a consortium of researchers, including (in alphabetical order):
		</p>
		<ul>
			<li> <a href="http://cholla.wustl.edu/">Nathan Baker</a> (<a href="mailto:baker@ccb.wustl.edu">baker@ccb.wustl.edu</a>) </li>
			<li> Paul Czodrowski (<a href="mailto:paul.czodrowski@musterco.com">paul.czodrowski@musterco.com</a>) </li>
			<li> Todd Dolinsky (<a href="mailto:todd@ccb.wustl.edu">todd@ccb.wustl.edu</a>) </li>
			<li> Yong Huang (<a href="mailto:yhuang@ccb.wustl.edu">yhuang@ccb.wustl.edu</a>) </li>
			<li> <a href="http://www.chem.unl.edu/faculty/eachfaculty/li.shtml">Hui Li</a> (<a href="mailto:huili06@unlserve.unl.edu">huili06@unlserve.unl.edu</a>) </li>
			<li> <a href="http://propka.ki.ku.dk/~jhjensen/">Jan Jensen</a> (<a href="mailto:jhjensen@kemi.ku.dk">jhjensen@kemi.ku.dk</a>) </li>
			<li> <a href="http://http://enzyme.ucd.ie/">Jens Nielsen</a> (<a href="mailto:Jens.Nielsen@ucd.ie">Jens.Nielsen@ucd.ie</a>) </li>
			<li> Samir Unni (<a href="mailto:srunni@gmail.com">srunni@gmail.com</a>) </li>
		</ul>
		<p> A number of authors have also provided extensions to PDB2PQR, authorship for these extensions are given in the individual source files in the "extensions" directory. </p>
		<hr>
		<p>
			<a name="installation" id="installation"></a>
		</p>
		<h3>
			Source Installation
		</h3>
		<p>
			As the bulk of the PDB2PQR code is written in <a href="http://python.org">Python</a>, the PDB2PQR code itself is architecture and compiler independent. PDB2PQR has been tested using Python versions 2.2 through 2.5 and Numeric version 24.2 - problems may occur with other versions. Users who simply want to use the PDB2PQR without <a href="http://propka.ki.ku.dk/">PROPKA</a> or ligand parameterization support and <a href="http://propka.ki.ku.dk/">PROPKA</a> can type
		</p>
		<blockquote>
			<code>$ ./configure --disable-propka --disable-pdb2pka<br>
			$ make<br>
			$ make install<br></code>
		</blockquote>
		<p>
			or skip the configure/make process altogether.
		</p>
		<h4>
			<a href="http://propka.ki.ku.dk/">PROPKA</a> support
		</h4>
		<p>
			The <a href="http://propka.ki.ku.dk/">PROPKA</a> code is written in Fortran. To use <a href="http://propka.ki.ku.dk/">PROPKA</a> with PDB2PQR, a three step installation is necessary, making use of available C and Fortran compilers:
		</p>
		<blockquote>
			<code>$ ./configure<br>
			$ make<br>
			$ make install<br></code>
		</blockquote>
		<p>
			This should compile the <a href="http://propka.ki.ku.dk/">PROPKA</a> wrappers necessary to interface with PDB2PQR.
		</p>
		<p>
			If the compilation fails please check the <a href="#faq">FAQ</a> section of this user guide, or if all else fails, send a <a href="#bug">bug report</a>.
		</p>
		<h4>
			PDB2PKA support
		</h4>
		<p>
			The ligand parameterization code (PDB2PKA) is written in C++ and Python. This portion of the code also requires the Python <a href="http://numpy.scipy.org/#older_array">Numeric</a> or <a href="http://numpy.scipy.org/">NumPy</a> package. Note that PDB2PQR has only been extensively tested against <a href="http://numpy.scipy.org/#older_array">Numeric</a>. Unlike earlier versions, PDB2PKA is enabled by default in this version. To use PDB2PKA with PDB2PQR, a three step installation is necessary, making use of available C and Fortran compilers:
		</p>
		<blockquote>
			<code>$ ./configure<br>
			$ make<br>
			$ make install<br></code>
		</blockquote>
		<p>
			This should compile the PDB2PKA wrappers necessary to interface with PDB2PQR. Note that this will also compile <a href="http://propka.ki.ku.dk/">PROPKA</a> support; this can be explicitly disabled by
		</p>
		<blockquote>
			<code>$ ./configure --enable-pdb2pka --disable-propka<br>
			$ make<br>
			$ make install<br></code>
		</blockquote>
		<p>
			If the compilation fails please check the <a href="#faq">FAQ</a> section of this user guide, or if all else fails, send a <a href="#bug">bug report</a>.
		</p>
		<h4>
			Web server installation
		</h4>
		<p>
			All the necessary files for web server installation are available with the PDB2PQR software; however, we would appreciate if users <a href="mailto:baker@ccb.wustl.edu">contact us</a> before installing a publicly-accessible version of the web server so we can ensure that you are informed of PBD2PQR updates, etc.
		</p>
		<p>
			<b>Note:</b> these instructions are intended for systems administrators with the ability to change the behavior of their web server software and/or install software in privileged locations.
		</p>
		<p>
			To set up a server, simply run
		</p>
		<blockquote>
			<code>$ ./configure<br>
			$ make<br>
			$ make install<br></code>
		</blockquote>
		<p>
			By default, the server is installed in <code>/var/www/html/pdb2pqr</code> and the default URL is <code>http://fully_qualified_domain_name/pdb2pqr</code>. If the user does not have root permission, then the server is installed in <code>${HOME}/pdb2pqr</code>.
		</p>
		<p>
			Configure options include
		</p>
		<blockquote>
			<code>--prefix</code> Installation directory (e.g., <code>/var/www/html/pdb2pqr</code>)<br>
			<code>--with-url</code> URL for the server (e.g., <code>http://somedomain/pdb2pqr</code>)<br>
			<code>--disable-propka</code> Disable PROPKA<br>
			<code>--disable-pdb2pka</code> Disable PDB2PKA<br>
			<code>--with-python</code> Path to Python (e.g., <code>/usr/local/bin/python2.5</code>)<br>
			<code>--with-opal</code> enable <a href="#opal">Opal service integration</a> pointing to the remote clusters available at <a href="http://nbcr.net">NBCR</a>; optionally specify a URL for an alternate remote Opal service.<br>
            <code>--with-apbs</code> enable the <a href="http://apbs.wustl.edu/">APBS</a> web interface. Must be pointing to a local APBS binary.<br>
            <code>--with-apbs-opal</code> enable Opal service integration for the APBS web interface pointing to the remote clusters available at NBCR; optionally specify a URL for an alternate remote Opal service. Requires simultaneous use of the <code>--with-apbs</code> flag, which must be pointing to a version of APBS greater than 1.0.0 (or the current SVN revision).<br>
		</blockquote>
		<h5>
			Troubleshooting
		</h5>
		<ul>
			<li>It is highly recommended that <code>--prefix</code> and <code>--with-url</code> point to the same directory. Specifications <code>--prefix=/var/www/html/pdb2pqr-test --with-url=http://somedomain/pdb2pqr-test</code> is recommened. On the other hand, specifications like <code>--prefix=/var/www/html/mypdb2pqr --with-url=http://somedomain/pdb2pqr-test</code> is not recommened because <code>mypdb2pqr</code> and <code>pdb2pqr-test</code> are different names.
			</li>
			<li>If the server interface loads fine, but you cannot execute pdb2pqr by clicking the "Submit" button, make sure you have the permission to execute pdb2pqr.cgi file. In particular, ensure that the access mode of pdb2pqr.cgi allows execution by the webserver (e.g., <code>chmod +x /var/www/html/pdb2pqr/pdb2pqr.cgi</code>). Additionally, you may need to change the configuration of your webserver to enable CGI execution. For the <a href="http://httpd.apache.org/">Apache</a> webserver, this involves editing <code>httpd.conf</code> to add ExecCGI to the option list for your server. In some installations, this may be as simple as adding a line like <code>Options Indexes FollowSymLinks ExecCGI</code> in the &lt;Directory "/var/www/html"&gt; section of the Apache configuration file. If you modify this file, you will need to restart the web server.
			</li>
		</ul>
		<h5>
			<a name="opal" id="opal">Opal web services</a>
		</h5>
		<p>
			The <a href="http://nbcr.net/">NBCR</a> development team has provided code that allows PDB2PQR to be run on remote clusters through the <a href="http://nbcr.net/services/">Opal web services toolkit</a>. This allows users to host a PDB2PQR server (e.g., for a class) without worrying about the load on their local computers.
		</p>
		<hr>
		<p>
			<a name="using" id="using"></a>
		</p>
		<h3>
			Using PDB2PQR
		</h3>
		<p>
			This section discusses the use of PDB2PQR from the command line. Many command line options are also available through the web servers. Interested users should also visit the PDB2PQR <a href="http://pdb2pqr.sourceforge.net/examples">examples page</a> which provides a tutorial on the usage of PDB2PQR for a variety of tasks.
		</p>
		<h4>
			Starting PDB2PQR and Available Options
		</h4>
		<p>
			Starting PDB2PQR from the web server is rather straightforward - simply click the desired options, specify or upload a PDB file, and submit the job. The command line version of PDB2PQR is similar:
		</p>
		<blockquote>
			<code>$ python pdb2pqr.py [options] --ff={forcefield} {path} {output-path}</code>
		</blockquote>
		<p>
			The required arguments are as follows:
		</p>
		<dl>
			<dt>
				<code>&lt;forcefield&gt;</code>
			</dt>
			<dd>
				The forcefield to use -- currently <code>AMBER</code> (AMBER99, <a href="#WCK00">Wang J, et al, 2000</a>), <code>CHARMM</code> (CHARMM27, <a href="#MacKerellEtal98">MacKerell AD Jr, et al, 1998</a>), <code>PARSE</code> (PARSE, <a href="#SitkoffEtal94">Sitkoff D, et al, 1994</a>), <code>TYL06</code> (<a href="#TYL06">Tan C, et al, 2006</a>), <code>PEOEPB</code> (PEOEPB, <a href="#CzodEtal06">Czodrowski P, et al, 2006</a>), and <code>SWANSON</code> (SWANSON, <a href="#SwansonEtal07">Swanson JMJ, et al, 2007</a>) are supported.
			</dd>
			<dt>
				<code>&lt;path&gt;</code>
			</dt>
			<dd>
				The path to the PDB file or an ID to obtain from the PDB archive
			</dd>
			<dt>
				<code>&lt;output-path&gt;</code>
			</dt>
			<dd>
				The desired output name of the PQR file to be generated
			</dd>
		</dl>
		<p>
			Optional command-line arguments are:
		</p>
		<dl>
			<dt>
				<code>--nodebump</code>
			</dt>
			<dd>
				Do not perform the <a href="#algorithm">debumping</a> operation
			</dd>
			<dt>
				<code>--noopt</code>
			</dt>
			<dd>
				Do not perform <a href="#algorithm">hydrogen bonding network optimization</a>
			</dd>
			<dt>
				<code>--chain</code>
			</dt>
			<dd>
				Keep the chain ID in the output PQR file
			</dd>
			<dt>
				<code>--assign-only</code>
			</dt>
			<dd>
				Only assign charges and radii - do not add atoms, debump, or optimize.
			</dd>
			<dt>
				<code>--clean</code>
			</dt>
			<dd>
				Do no optimization, atom addition, or parameter assignment, just return the original PDB file in aligned format.
			</dd>
			<dt>
				<code>--ffout=&lt;name&gt;</code>
			</dt>
			<dd>
				Instead of using the standard canonical naming scheme for residue and atom names, use the names from the given forcefield.
			</dd>
			<dt>
				<code>--with-ph=&lt;ph&gt;</code>
			</dt>
			<dd>
				Use <a href="http://propka.ki.ku.dk/">PROPKA</a> to calculate pKas and apply them to the molecule given the pH value. Actual PropKa results will be output to &lt;output-path&gt;.propka.
			</dd>
			<dt>
				<code>--ligand=&lt;mol2 file&gt;</code>
			</dt>
			<dd>
				Use the PDB2PKA package to <a href="#algorithm">generate parameters for the specific ligand</a> in MOL2 format. MOL2-format ligands can be generated using <a href="http://davapc1.bioch.dundee.ac.uk/programs/prodrg/">PRODRG</a> server or from within some molecular modeling packages
			</dd>
			<dt>
				<code>--apbs-input</code>
			</dt>
			<dd>
				Create a template <a href="http://apbs.wustl.edu">APBS</a> input file based on the generated PQR file.
			</dd>
			<dt>
				<code>--whitespace</code>
			</dt>
			<dd>
				Put extra whitespaces between atom name and residue name, between x and y, and between y and z. This may (or may not) break strict PDB formatting and cause problems for some visualization programs.
			</dd>
			<dt>
				<code>--typemap</code>
			</dt>
			<dd>
				Create Typemap output.
			</dd>
			<dt>
				<code>--neutraln</code>
			</dt>
			<dd>
				Make the N-terminus of this protein neutral (default is charged).
			</dd>
			<dt>
				<code>--neutralc</code>
			</dt>
			<dd>
				Make the C-terminus of this protein neutral (default is charged).
			</dd>
			<dt>
				<code>--verbose (-v)</code>
			</dt>
			<dd>
				Print information to stdout
			</dd>
			<dt>
				<code>--help (-h)</code>
			</dt>
			<dd>
				Display the usage information
			</dd>
		</dl>
		<p>
			Additional optional command-line arguments from the <a href="programmerguide.html#extensions">extensions</a> directory are:
		</p>
		<dl>
			<dt>
				<code>--chi</code>
			</dt>
			<dd>
				Print the per-residue backbone chi angle to <code>{output-path}.chi</code>
			</dd>
			<dt>
				<code>--phi</code>
			</dt>
			<dd>
				Print the per-residue backbone phi angle to <code>{output-path}.phi</code>
			</dd>
			<dt>
				<code>--psi</code>
			</dt>
			<dd>
				Print the per-residue backbone psi angle to <code>{output-path}.psi</code>
			</dd>
			<dt>
				<code>--rama</code>
			</dt>
			<dd>
				Print the per-residue phi and psi angles to <code>{output-path}.rama</code> for Ramachandran plots
			</dd>
			<dt>
				<code>--hbond</code>
			</dt>
			<dd>
				Print a list of hydrogen bonds to <code>{output-path}.hbond</code>
			</dd>
			<dt>
				<code>--salt</code>
			</dt>
			<dd>
				Print a list of salt bridges to <code>{output-path}.salt</code>
			</dd>
		</dl>
		<hr>
		<p>
			<a name="algorithm" id="algorithm"></a>
		</p>
		<h3>
			Algorithm Descriptions
		</h3>
		<p>
			The overall workflow for the PDB2PQR service is outlined <a href="images/flowchart.png">here (PNG image)</a>. The following sections provide more detail about specific aspects of the PDB2PQR algorithms.
		</p>
		<h4>
			Debumping algorithm
		</h4>
		<p>
			The debumping algorithm ensures that any new heavy or hydrogen atoms are not rebuilt within the Van der Waals radii of existing atoms. If this does occur, the sidechain of the residue in question will be rotated about an available &chi; angle until the steric conflict is resolved.
		</p>
		<p>
			The number of residues that need to be debumped depends on the nature of the system and if hydrogen optimization will be performed. If hydrogens are the only atoms missing any potential conflicts are usually due to hydrogen bonds, and if optimization is enabled these conflicts are usually resolved during that step. In the case where a large number of heavy sidechain atoms are missing there could be additional debumping necessary - as the sidechain is rebuilt the initial &chi; angle may not be the optimal one, and thus a steric conflict may occur.
		</p>
		<h4>
			Hydrogen bonding network optimization
		</h4>
		<p>
			The hydrogen bonding network optimization seeks, as the name suggests, to optimize the hydrogen bonding network of the protein. Currently this entails manipulating the following residues:
		</p>
		<ul>
			<li>Flipping the side chains of HIS (including user defined HIS states), ASN, and GLN residues;
			</li>
			<li>Rotating the sidechain hydrogen on SER, THR, TYR, and CYS (if available);
			</li>
			<li>Determining the best placement for the sidechain hydrogen on neutral HIS, protonated GLU, and protonated ASP;
			</li>
			<li>Optimizing all water hydrogens.
			</li>
		</ul>
		<h4>
			Titration state assignment
		</h4>
		<p>
			Protein residue titration states are assigned using pK<sub>a</sub> values determined by <a href="http://propka.ki.ku.dk/">PROPKA</a>. For more details, please visit the <a href="http://propka.ki.ku.dk/">PROPKA homepage</a>.
		</p>
		<h4>
			Ligand parameterization
		</h4>
		<p>
			The calculation of ligand charges necessitates detailed information on molecular structure and protonation states due to the large variation in the covalent structures of small-molecule protein ligands. The current version of PDB2PQR therefore requires the ligand structure, protonation state, and formal charge to be specified by the user in the popular MOL2 file format (<a href="http://www.tripos.com/data/support/mol2.pdf">link to PDF)</a>. Ligand structures in MOL2 format are readily available from popular molecular modeling software and free web services such as <a href="http://davapc1.bioch.dundee.ac.uk/programs/prodrg/">PRODRG</a>. Future versions of PDB2PQR will include a pdb2mol2 parser and automatic assignment of default ligand protonation states from a small-molecule pKa database.
		</p>
		<p>
			The calculation of ligand charges in PDB2PQR is based on the partial equalization of orbital electronegativities (PEOE) procedure developed by Gasteiger and Marsili (<a href="#GaMa80">Gasteiger, 1980</a>). In the PEOE procedure, orbital electronegativities <i>&chi;</i> are linked to partial atomic charges <i>q</i> by a polynomial expansion (<i>&chi;= a + b q + c q<sup>2</sup> + d q<sup>3</sup></i>). The coefficients <i>a</i>, <i>b</i>, <i>c</i>, and <i>d</i> were optimized by Gasteiger and Marsili using gas phase data on ionization potentials and electron affinities. We utilize a PEOE algorithm, which has been optimized by <a href="#CzodEtal06">Czodrowski et al.</a> to obtain better agreement between theoretical and experimental solvation energies for a set of small molecules including the polar amino acids.
		</p>
		<hr>
		<p>
			<a name="limitations" id="limitations"></a>
		</p>
		<h3>
			Limitations
		</h3>
		<p>
			The following is a list of known limitations with the current version of PDB2PQR. Many of these limitations will be removed/fixed in future releases of the software:
		</p>
		<ul>
			<li>Web server is limited to biomolecules with less than 10,000 atoms. To limit the load on our servers, we currently limit web server submissions to proteins containing fewer than 10,000 atoms. If you are interested in using PDB2PQR for larger proteins, you are encouraged to download a command line version of PDB2PQR from the <a href="http://pdb2pqr.sourceforge.net/">PDB2PQR home page</a>.
			</li>
			<li>Ligands do not change PROPKA pK<sub>a</sub> predictions. At this time, PROPKA does not consider ligand effects (H-bonding, charges, etc.) when calculating pK<sub>a</sub> values. This support will be provided in future versions of PDB2PQR.
			</li>
			<li>Browser "back" button not supported. Due to our use of CGI forms, we do not recommend use of your browser "back" button when using PDB2PQR. Links are provided on most pages for navigating the PDB2PQR site.
			</li>
		</ul>
		<hr>
		<p>
			<a name="faq" id="faq"></a>
		</p>
		<h3>
			Frequently Asked Questions
		</h3>
		<dl>
			<dt>
				What is a PQR file?
			</dt>
			<dd>
				A PQR file is a PDB file with the temperature and occupancy columns replaced by columns containing the per-atom charge (Q) and radius (R). PQR files are used in several computational biology packages, including <a href="http://apbs.wustl.edu">APBS</a>.
			</dd>
			<dt>
				What forcefields are available?
			</dt>
			<dd>
				PDB2PQR currently has built in support for AMBER 94, CHARMM 27, and PARSE. You may also supply a user-defined forcefield.
			</dd>
			<dd>
				<a name="userff" id="userff"></a>
			</dd>
			<dt>
				Can I add my own charge and radius parameters to PDB2PQR?
			</dt>
			<dd>
				Yes; there are two ways to add your own parameters to PDB2PQR:
				<dl>
					<dt>
						Adding a few additional parameters to an existing forcefield
					</dt>
					<dd>
						If you are just adding the parameters of a few residues and atoms to an existing forcefield (e.g., AMBER), you can open the forcefield data file (<code>dat/AMBER.DAT</code>) directly and add your parameters. After the parameter addition, save the force field data file (<code>dat/AMBER.DAT</code>) with your changes. You should also update the corresponding .names file (<code>dat/AMBER.names</code>) if your added residue or atom naming scheme is different from the <a href="http://pdb2pqr.sourceforge.net/programmerguide.html#canon">canonical naming scheme</a> of PDB2PQR.
					</dd>
					<dt>
						Adding an entirely new forcefield
					</dt>
					<dd>
						If you are adding a new forcefield to PDB2PQR, then you will need to follow the instructions below:
						<ol>
							<li>
								Provide two files: your forcefield data file (e.g., <code>myff.DAT</code>).  If your atom naming scheme of the forcefield is different from the <a href="http://pdb2pqr.sourceforge.net/programmerguide.html#canon">canonical naming scheme</a> of PDB2PQR, then you will also need to provide a names files (<code>myff.names</code>).  It is recommended to build your own forcefield data file and names file based on existing <code>.DAT</code> and <code>.names</code> file formats.  For more information on the xml format used in <code>.names</code> files, please refer to the <a href="http://pdb2pqr.sourceforge.net/programmerguide.html#xml">xml section</a> in the programmer's guide.
							</li>
							<li>
								After finishing your forcefield data file and names file, these can be used with either the command line or the web server versions of PDB2PQR:
								<ul>
									<li type="disc">
										For command line execution:
									</li>
									<ol>
										<li type="a">
											Locate your PDB2PQR distribution and place the forcefield and names files in the dat/ directory.
										</li>
										<li type="a">
											On PDB2PQR command line version, run:
											<dd>
												<code>$ python pdb2pqr.py [options] --ff=myff {path} {output-path}</code>
											</dd>
										</li>
									</ol>
									<li type="disc">
										For the web server, select "User-defined forcefield" radio button, then specify your user-defined data file and names file. Select other options when needed, and then click "Submit".
									</li>
								</ul>
							</li>
						</ol>
					</dd>
				</dl>
			</dd>
			<dt>
				What compilers and architectures are compatible with PDB2PQR?
			</dt>
			<dd>
				The PDB2PQR code itself is platform independent, but to use PropKa within PDB2PQR you must compile some code. PropKa has been tested with the Gnu gcc/g77 compilers on i*86, ia64, x86_64, and Mac OS X (Darwin) systems. It has also been tested with Intel icc/ifort compilers on i*86 and ia64 systems. If you find that PDB2PQR/PropKa does not compile on your system please send a <a href="#bug">bug report</a>. PDB2PKA requires a C++ compiler and has been tested with g++.
			</dd>
			<dt>
				Can I install PDB2PQR on Windows?
			</dt>
			<dd>
				The PDB2PQR code itself is in OS-independent Python, and thus will work with Python under Cygwin. Unfortunately PropKa makes use of compilers and shared objects, which can be rather tricky through Cygwin. For basic functionality it is <b>strongly recommended</b> to use PDB2PQR without PropKa enabled; if you would like to try to get PropKa working as well, you might want to look at section 6.2.2 of the <a href="http://www.python.org/doc/2.4.1/inst/tweak-flags.html">Building Extensions</a> in the Python Tutorial.
			</dd>
			<dt>
				How is PDB2PQR licensed?
			</dt>
			<dd>
				PDB2PQR is covered under the <a href="http://www.opensource.org/licenses/bsd-license.php">BSD License</a>, which basically means you can copy it, change it, use subsets of it, redistribute it, etc.; however, you need to give credit to the original source and the original portion of the code must remain under the BSD License. The PropKa and PDB2PKA packages are also available under the BSD License.
			</dd>
			<dt>
				Does the input PDB file need to be in a specific format?
			</dt>
			<dd>
				Ideally all input PDB files would be in standard <a href="http://www.rcsb.org/pdb/file_formats/pdb/pdbguide2.2/guide2.2_frame.html">PDB Format</a>. Since this format assigns information to specific columns, if this information is not present (as in, for example, whitespace delimited files) PDB2PQR may give extraneous results.
			</dd>
			<dt>
				Why are the chain IDs not included in the output file?
			</dt>
			<dd>
				This is done specifically for APBS, as older versions of APBS were unable to handle chain IDs in a PQR file. To keep the chain IDs in your resulting PQR file please use the <code>--chain</code> option.
			</dd>
			<dd>
				<a name="outff" id="outff"></a>
			</dd>
			<dt>
				Can PDB2PQR output create a PQR file using forcefield-specific residue and atom names?
			</dt>
			<dd>
				Yes, using the <code>--ffout</code> flag. Note that for patch-based forcefields a single residue might have different residue names. Additionally, some forcefield residue names might have 4 letters instead of the standard 3 letters, yielding columns that merge together - if you are using the resulting PQR file for APBS, this will more than likely cause errors.
			</dd>
			<dt>
				What types of residues can PDB2PQR recognize?
			</dt>
			<dd>
				PDB2PQR recognizes all of the standard amino acids, nucleic acids, and waters (both WAT and HOH) - for a complete list (and the standard naming scheme) please see the discussion in the <a href="programmerguide.html#canon">Programmer's Guide</a>.
			</dd>
			<dt>
				How can I add my own functions to PDB2PQR?
			</dt>
			<dd>
				In version 1.1.0 the extensions directory was added, allowing users to add their own post-processing scripts. For more information please see the appropriate section in the <a href="programmerguide.html#extensions">Programmer's Guide</a>.
			</dd>
			<dt>
				I already know the protonation state of a residue. How can I make PDB2PQR aware of it?
			</dt>
			<dd>
				PDB2PQR has the ability to recognize certain protonation states and keep them fixed during optimization. To use this feature manually rename the residue name in the PDB file as follows:
				<ul>
					<li>Neutral ASP: ASH
					</li>
					<li>Negative CYS: CYM
					</li>
					<li>Neutral GLU: GLH
					</li>
					<li>Neutral HIS: HIE/HID/HSD/HSE
					</li>
					<li>Positive HIS: HIP/HSP
					</li>
					<li>Neutral LYS: LYN
					</li>
					<li>Negative TYR: TYM
					</li>
				</ul>
			</dd>
			<dt>
				What causes the following warning - WARNING: PDB2PQR was unable to assign charges to the following atoms
			</dt>
			<dd>
				This message usually occurs when atoms belonging to ligands or other residues are not found in the forcefield data file. As a conversion utility PDB2PQR is unable to assign charges and radii when they are not available in the forcefield - thus this warning message will occur for most ligands <i>unless</i> a MOL2 file is provided for the ligand with the <code>--ligand</code> option. Occasionally this message will occur in error for a standard amino acid residue where an atom or residue may be misnamed.
			</dd>
			<dt>
				What causes the following warning - WARNING: Propka determined the following residues to be in a protonation state not supported by the forcefield!
			</dt>
			<dd>
				Some of the protonation states derived from the PropKa results are not supported in the requested forcefield and thus PDB2PQR is unable to get charges and radii for that state. PDB2PQR currently supports the following states as derived from PropKa:<br>
				<table border="1">
					<tr>
						<th>
							Protonation State
						</th>
						<th>
							AMBER Support
						</th>
						<th>
							CHARMM Support
						</th>
						<th>
							PARSE Support
						</th>
					</tr>
					<tr>
						<td>
							Neutral N-Terminus
						</td>
						<td>
							No
						</td>
						<td>
							No
						</td>
						<td>
							Yes
						</td>
					</tr>
					<tr>
						<td>
							Neutral C-Terminus
						</td>
						<td>
							No
						</td>
						<td>
							No
						</td>
						<td>
							Yes
						</td>
					</tr>
					<tr>
						<td>
							Neutral ARG
						</td>
						<td>
							No
						</td>
						<td>
							No
						</td>
						<td>
							No
						</td>
					</tr>
					<tr>
						<td>
							Neutral ASP
						</td>
						<td>
							Yes*
						</td>
						<td>
							Yes
						</td>
						<td>
							Yes
						</td>
					</tr>
					<tr>
						<td>
							Negative CYS
						</td>
						<td>
							Yes*
						</td>
						<td>
							No
						</td>
						<td>
							Yes
						</td>
					</tr>
					<tr>
						<td>
							Neutral GLU
						</td>
						<td>
							Yes*
						</td>
						<td>
							Yes
						</td>
						<td>
							Yes
						</td>
					</tr>
					<tr>
						<td>
							Neutral HIS
						</td>
						<td>
							Yes
						</td>
						<td>
							Yes
						</td>
						<td>
							Yes
						</td>
					</tr>
					<tr>
						<td>
							Neutral LYS
						</td>
						<td>
							Yes*
						</td>
						<td>
							No
						</td>
						<td>
							Yes
						</td>
					</tr>
					<tr>
						<td>
							Negative TYR
						</td>
						<td>
							No
						</td>
						<td>
							No
						</td>
						<td>
							Yes
						</td>
					</tr>
				</table><br>
				* - only if residue is not a terminal residue; if the residue is terminal it will not be set to this state
			</dd>
		</dl>
		<hr>
		<p>
			<a name="bug" id="bug"></a>
		</p>
		<h3>
			Bug Reports and Suggestions
		</h3>
		<p>
			Before sending a bug report, you may want to check the <a href="http://sourceforge.net/mailarchive/forum.php?forum=pdb2pqr-users">pdb2pqr-users mailing list archives</a> or the existing <a href="http://sourceforge.net/tracker/?group_id=144228&amp;atid=758143">PDB2PQR SourceForge Bug List</a> to make sure your question has not already been addressed. Otherwise please post all bug reports, support requests, or feature requests to the appropriate <a href="http://sourceforge.net/tracker/?group_id=144228">PDB2PQR SourceForge Tracker</a>.
		</p>
		<p>
			For additional support you may contact the <a href="http://lists.sourceforge.net/lists/listinfo/pdb2pqr-users">pdb2pqr-users mailing list</a>.
		</p>
		<hr>
		<p>
			<a name="bib" id="bib"></a>
		</p>
		<h3>
			References and Further Reading
		</h3>
		<ul>
			<li>
				<a name="CzodEtal06" id="CzodEtal06">Czodrowski P, Dramburg I, Sotriffer CA, Klebe G. Development, validation, and application of adapted PEOE charges to estimate pKa values of functional groups in protein-ligand complexes. <i>Proteins</i> <b>65</b> (2) 424-37, 2006.</a> (<a href="http://dx.doi.org/10.1002/prot.21110">http://dx.doi.org/10.1002/prot.21110</a>). Description of PEOE method used for ligand parameterization.
			</li>
			<li>
				<a name="DolinskyEtal04" id="DolinskyEtal04">Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA. PDB2PQR: an automated pipeline for the setup of Poisson0Boltzmann electrostatics calculations. <i>Nucleic Acids Res</i> <b>32</b>, W665-7, 2004.</a> (<a href="http://dx.doi.org/10.1093/nar/gkh381">http://dx.doi.org/10.1093/nar/gkh381</a>). Original PDB2PQR paper.
			</li>
			<li>
				<a name="GaMa80" id="GaMa80">Gasteiger J, Marsili M. Iterative partial equalization of orbital electronegativity -- rapid access to atomic charges. <i>Tetrahedron</i> <b>36</b> (22) 3219-28, 1980.</a> (<a href="http://dx.doi.org/10.1016/0040-4020(80)80168-2">http://dx.doi.org/10.1016/0040-4020(80)80168-2</a>). Description of original charge assignment method.
			</li>
			<li>
				<a name="LRJ05" id="LRJ05">Li H, Robertson AD, Jensen JH. Very fast empirical prediction and rationalization of protein pKa values. <i>Proteins</i> <b>61</b> (4) 704-21, 2005.</a> (<a href="http://dx.doi.org/10.1002/prot.20660">http://dx.doi.org/10.1002/prot.20660</a>). Original PROPKA paper.
			</li>
			<li>
				<a name="MacKerellEtal98" id="MacKerellEtal98">MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE III, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczer a, Yin D, Karplus M. All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. <i>J Phys Chem B</i> <b>102</b> (18) 3586-616, 1998.</a> (<a href="http://dx.doi.org/10.1021/jp973084f">http://dx.doi.org/10.1021/jp973084f</a>). Paper describing the "CHARMM" force field used by PDB2PQR.
			</li>
			<li>
				<a name="SitkoffEtal94" id="SitkoffEtal94">Sitkoff D, Sharp KA, Honig B. Accurate Calculation of Hydration Free Energies Using Macroscopic Solvent Models. <i>J Phys Chem</i> <b>98</b> (7) 1978-88, 1994.</a> (<a href="http://pubs.acs.org/cgi-bin/archive.cgi/jpchax/1994/98/i07/pdf/j100058a043.pdf">http://pubs.acs.org/cgi-bin/archive.cgi/jpchax/1994/98/i07/pdf/j100058a043.pdf</a>). Paper describing the "PARSE" force field used by PDB2PQR.
			</li>
			<li>
				<a name="SwansonEtal07" id="SwansonEtal07">Swanson JMJ, Wagoner JA, Baker NA, McCammon JA. Optimizing the Poisson Dielectric Boundary with Explicit Solvent Forces and Energies: Lessons Learned with Atom-Centered Dielectric Functions. <i>J Chem Theory Comput</i> <b>3</b> 170-183, 2007.</a> (<a href="http://dx.doi.org/10.1021/ct600216k">http://dx.doi.org/10.1021/ct600216k</a>). Paper describing the "SWANSON" force field used by PDB2PQR.
			</li>
			<li>
				<a name="TYL06" id="TYL06">Tan C, Yang L, Luo R. How Well Does Poisson-Boltzmann Implicit Solvent Agree with Explicit Solvent? A Quantitative Analysis. <i>J Phys Chem B</i> <b>110</b> (37) 18680-7, 2006.</a> (<a href="http://dx.doi.org/10.1021/jp063479b">http://dx.doi.org/10.1021/jp063479b</a>). Paper describing the "TYL06" force field used by PDB2PQR.
			</li>
			<li>
				<a name="WCK00" id="WCK00">Wang J, Cieplak P, Kollman PA. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? <i>J Comput Chem</i> <b>21</b> (12) 1049-74, 2000.</a> (<a href="http://www3.interscience.wiley.com/cgi-bin/abstract/72511509/ABSTRACT">http://www3.interscience.wiley.com/cgi-bin/abstract/72511509/ABSTRACT</a>). Paper describing the "AMBER" force field used by PDB2PQR.
			</li>
		</ul>
		<hr>
		<center>
			<a href="http://sourceforge.net/projects/pdb2pqr">SourceForge Project Page</a>
		</center>
		<hr>
		<center>
			<small>Last changed on: $Date: 2007-09-06 11:06:05 -0600 (Thu, 06 Sep 2007)$</small>
		</center>
	</body>
</html>